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Abstract
Geographic ranges of communities of species evolve in response to environmental,
ecological, and evolutionary forces. Understanding the effects of these forces on
species’ range dynamics is a major goal of spatial ecology. Previous mathematical
models have jointly captured the dynamic changes in species’ population distribu-
tions and the selective evolution of fitness-related phenotypic traits in the presence of
an environmental gradient. These models inevitably include some unrealistic assump-
tions, and biologically reasonable ranges of values for their parameters are not easy to
specify. As a result, simulations of the seminalmodels of this type can lead tomarkedly
different conclusions about the behavior of such populations, including the possibility
of maladaptation setting stable range boundaries. Here, we harmonize such results by
developing and simulating a continuum model of range evolution in a community of
species that interact competitively while diffusing over an environmental gradient. Our
model extends existing models by incorporating both competition and freely chang-
ing intraspecific trait variance. Simulations of this model predict a spatial profile of
species’ trait variance that is consistent with experimental measurements available in
the literature. Moreover, they reaffirm interspecific competition as an effective factor
in limiting species’ ranges, even when trait variance is not artificially constrained.
These theoretical results can inform the design of, as yet rare, empirical studies to
clarify the evolutionary causes of range stabilization.
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1 Introduction

Identifying the biotic, genetic, and environmental factors that determine a species’
range is a fundamental problem in spatial ecology. Sometimes the reason why a range
limit is where it is is obvious: a terrestrial species cannot colonize the ocean, for
example. Yet often species’ range limits do not coincide with a gross environmental
discontinuity (Gaston et al. 2003).

Numerous theoretical models have therefore been developed to explain species’
range dynamics. These models incorporate a variety of factors and processes, such
as dispersal limitations, Allee effects, landscape heterogeneity, environmental stress
gradients, niche limitations, gene flow, genetic drift, population genetic structure, and
biotic interactions such as competition and predation (Sexton et al. 2009; Bridle and
Vines 2007; Miller et al. 2020; Angert et al. 2020; Holt and Keitt 2005; Godsoe et al.
2017; Louthan et al. 2015; Case et al. 2005). Here, we focus on two factors that are
commonly said to limit species’ ranges by halting range expansions or stabilizing a
range boundary: competition and (mal)adaptation to a heterogeneous environment.

1.1 Competition, Adaptation, and Species’Range Dynamics

Empirical and theoretical studies have confirmed that competing species often seg-
regate in different parts of the habitat available to them and resist encroachment by
competitors in areas where they are established (Pigot and Tobias 2013). By contrast,
less evidence for failure to adapt to a continuously varying environment as a range-
limiting factor exists (Micheletti and Storfer 2020; Angert et al. 2020; Colautti and
Lau 2015; Benning et al. 2019). This is largely due to the difficulty of establishing
values for key parameters in evolutionary models, especially the optimum value of a
trait under selection as a function of time and space. However, a few empirical studies
in both altitudinal and latitudinal environmental gradients support the hypothesis that a
population spreading in a heterogeneous environment can be halted by maladaptation,
even in the absence of environmental discontinuities (Dawson et al. 2010; Sanford
et al. 2006).

Theoretical studies of the joint action of competition and adaptation are there-
fore valuable, as they can point to conditions under which adaptation, or failure to
adapt, become important factors in limiting ranges. Such studies should therefore
help researchers develop tests for selection as a range-limiting factor. Ultimately, they
should inform environmental management decisions, such as allocating conserva-
tion effort among marginal or central populations, planning for the impact of climate
change on the structure and survival of natural communities, and controlling invasive
species.
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1.2 Models of Adaptation to an Environmental Gradient

The model we present here builds on a sequence of models inspired by an influen-
tial idea—genetic swamping—suggested by Haldane (1956) and Mayr (1963). They
hypothesized that the intraspecific feedback between core-to-edge maladaptive gene
flow and population density of a species can limit its range. Building on the work
by Pease et al. (1989), this process was mathematically modeled by Kirkpatrick and
Barton (1997) for a single species in a one-dimensional geographic space—as a sys-
tem of two partial differential equations that represent joint evolution of the species’
population density and the mean value of a quantitative phenotypic trait along a linear
environmental gradient in the trait optimum. The quantitative trait is assumed to be
directly associated with the fitness of the species’ individuals. Wing loading and body
size in flying insects (Takahashi et al. 2016), or specific leaf area and height in plants
(Ackerly and Cornwell 2007), are examples of such fitness-related traits. Stabilizing
selection on the quantitative trait in theKirkpatrick andBarton (KB)model enables the
species to adapt to new areas and expand its range. However, Kirkpatrick and Barton
showed numerically that with sufficiently steep environmental gradients, gene flow
from the densely populated center of the species’ range can prevent local adaptation
at the periphery and result in an evolutionarily stable range limit—that is, their model
demonstrated range pinning through genetic swamping. A derivation of the KBmodel
as well as analytical results on the existence of range expansion traveling waves and
some localized stationary solutions for this model are provided by Miller and Zeng
(2014), Miller (2019), and Mirrahimi and Raoul (2013).

A number of models have been constructed and (usually numerically) analyzed
that build on the KB model. Each of these modeling studies takes some factor or
factors omitted from the KB model, checks whether it makes range pinning easier or
harder to achieve, and in some cases also studies its effect on quantitative properties like
invasion speed. Such variants include individual-basedmodels, models with stochastic
differential equations, andmodels with discrete time and/or space (Duputié et al. 2012;
Polechová et al. 2009; Alleaume-Benharira et al. 2006; Polechová 2018; Filin et al.
2008; Bridle and Vines 2007; Polechová and Barton 2015; Kanarek and Webb 2010).
Some models incorporate interspecific competition (Leimar et al. 2008; Goldberg and
Lande 2006) and some incorporate mutation (Behrman and Kirkpatrick 2011).

Among these varied studies, one key extension of the KB model was developed
by Case and Taper (2000). They gave a community context to the KB model by
considering multiple species and competitive interactions between them. Through
numerical simulations of their model, Case and Taper showed that the interaction
of an environmental gradient and gene flow with the frequency-dependent selection
generated by phenotypic competition between species can result in range limits at
much shallower environmental gradients than without competition. They also showed
that their model generates a number of other important evolutionary phenomena,
such as species character displacement in sympatry and range shifts in response to
climate change. In addition, Case and Taper challenged the conclusions of Kirkpatrick
and Barton (1997) by arguing that competition would be an important force setting
range boundaries, even in conditions favorable to genetic swamping, for most realistic
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parameter combinations. Indeed, they argued that realistic trait optimum gradients
would rarely be steep enough to limit ranges in the absence of competition (Case and
Taper 2000).

Shortly after Case and Taper’s study appeared, Barton extended the original KB
model, in which additive genetic variance was held constant, to a model in which
this variance was allowed to evolve along with population density and trait mean
(Barton 2001). He developed different variants of the model, in which he also incor-
porated mutation as a constant forcing term in the equations governing the variance.
He concluded from numerical simulations that range pinning via genetic swamping
was impossible for these models. Instead, he found that genetic variance inevitably
rose past a critical value, providing “fuel” that allowed even a temporarily pinned pop-
ulation to spread over the whole domain. In the same book chapter, Barton raised two
arguments against Case and Taper’s conclusion that competition would usually play
a greater role than genetic swamping in setting range limits. Specifically, he argued
that adaptation typically involves several traits, which would increase the selective
pressures in a swamping model, and that Case and Taper were too restrictive in their
judgment as to how steep a spatial trait optimumgradientmight realistically be (Barton
2001).

1.3 PresentWork

Juxtaposing the work of Case and Taper (2000) with that of Barton (2001) presents
a conflict that must be resolved. That range limits can arise in continuously varying
environments is well established (Sexton et al. 2009). When Barton made the KB
model (arguably) more realistic by taking account of mutational and other changes in
trait variance, the revised models predicted that such range limits could not be set by
genetic swamping (Barton 2001). This would imply that other key drivers of range
pinning must exist. Competition suggests itself as such a driver, particularly in view
of Case and Taper’s findings (Case and Taper 2000). However, Case and Taper held
variance constant in their model, so the challenge to the genetic swamping hypothesis
posed by Barton’s findings (Barton 2001) cannot be settled merely by appealing to
Case and Taper. Rather, we must test whether competition, combined with selection
favoring an optimum trait value that varies in space, can still set range limits when
trait variance is allowed to evolve together with population density and trait mean.

Here, we resolve the tension between the disparate conclusions of Kirkpatrick
and Barton (1997), Case and Taper (2000), and Barton (2001) by incorporating both
competition and nonconstant trait variance in a model of adaptation and spread in
an environmental gradient. We take particular care to establish plausible ranges for
parameter values, since these ranges play a role in the debate over whether genetic
swamping is commonly a dominant influence on range limits.We explore the behavior
of solutions to our model numerically, finding that the results of Case and Taper
(2000) are robust when the assumption of constant trait variance is eliminated and
even when mutation, as a perpetual source of genetic variance, is incorporated in the
model through a forcing term as in the work of Barton (2001). We focus primarily on
the establishment of stable boundaries between the ranges of two competitors initially
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established in allopatry. However, we also briefly investigate other scenarios, including
the ability of a newly arrived species to establish itself and spread in a habitat already
occupied by a competitor.

2 Model Description

We present our model of species range dynamics in a community of N competing
species as a system of coupled PDEs. The derivation of the model is provided in detail
in “Appendix A,” and relies on the following main assumptions about the species’ dis-
persal and reproduction rates, as well as trait distributions and selection. Mathematical
formulations of these assumptions are given in “Appendix A.4.”

(i) Each species disperses by diffusion in a rectangular or linear habitat.
(ii) Traits are subject to directional and stabilizing selection toward an optimal value

that may vary over space and time.
(iii) Trait values within each species are normally distributed at each occupied point

in space at all times.1

(iv) The reproduction rate of individuals with a given phenotype depends (predomi-
nantly) on the population density of individuals with the same phenotype.2

(v) The strength of competition between the species is determined by each species’
pattern of utilizing a common resource.

(vi) The probability of mutational changes from one phenotype to another phenotype
depends on the difference between the phenotypes. Moreover, these phenotypic
changes due to mutation follow a distribution with zero mean and constant vari-
ance.

To specify themodel, we start by defining them-dimensional habitatΩ ⊂ R
m to be

an open rectangle. At position x = (x1, . . . , xm) ∈ Ω and time t ∈ [0, T ], T > 0, we
further let ni (x, t) denote the population density of the i th species, and let qi (x, t) and
vi (x, t) denote the mean value and variance of a quantitative phenotypic trait in the
i th species, respectively. Note that, by definition, ni (x, t) and vi (x, t) are nonnegative
quantities. For brevity, we define a vector u containing all these state variables:

u = (n1, q1, v1, . . . , nN, qN, vN).

1 It is argued that normal distribution of phenotypes, which is also assumed in the ancestors of our model,
is a reasonable assumption when most of the genetic variation in a species is maintained by migration (gene
flow) rather than by mutation (Barton 1999, 2001). This is often the case when a species adaptively expands
its range over an environmental gradient, as we primarily study here.
2 In our model, the reproduction of individuals with phenotype p has been modeled through a logistic
growth term that depends on the population density of individuals only with phenotype p ; see Eqs. (17)
and (25) in “Appendix A.” Although this logistic population growth fits in with an asexual reproduction
system more trivially, it can also approximately accommodate a sexual reproduction system as long as the
rate of production of offspring with phenotype p is predominantly proportional to the density of parents
with phenotype p. This can approximately occur under our assumption of normal (unimodal) phenotype
distribution within each population, provided the populations are sufficiently panmictic.
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Now, letting Di (x) andGi (x, t) denote the diffusion coefficient and mean growth rate,
respectively, of the i th species, we write the equation for the population density ni as

∂t ni (x, t) = div(Di (x)∂xni (x, t)) + Gi (x, u(x, t))ni (x, t). (1)

The functional form of Gi is given below. Likewise, equations for the trait mean qi
and variance vi of the i th species are given as

∂t qi (x, t) = div(Di (x)∂xqi (x, t)) + 2 (∂x log ni (x, t),Di (x)∂xqi (x, t))Rm

+Hi (x, u(x, t)), (2)

and

∂tvi (x, t) = div(Di (x)∂xvi (x, t)) + 2 (∂x log ni (x, t),Di (x)∂xvi (x, t))Rm

+ 2 (∂xqi (x, t),Di (x)∂xqi (x, t))Rm + Wi (x, u(x, t)). (3)

Here, the nonlinear mappings Gi , Hi , and Wi are defined as

Gi (x, u) = Ri (x) − Ri (x)

Ki (x)

N∑

j=1

Mi j (u)Ci j (u)n j − S

2

[
(qi − Q(x))2 + vi

]
, (4)

Hi (x, u) = (Ri (x) − Gi (x, u))qi − Ri (x)

Ki (x)

N∑

j=1

Li j (u)Mi j (u)Ci j (u)n j + Ei (x, u),

(5)

Wi (x, u) = (Ri (x) − Gi (x, u))(vi − q2i )

− Ri (x)

Ki (x)

N∑

j=1

Pi j (u)Mi j (u)Ci j (u)n j + Yi (x, u), (6)

where, letting Λi j :=
√
Vi/V̄i j with V̄i j := 1

2 (Vi + V j ),

Ci j (u) :=
√

2V̄i j

vi + v j + 2V̄i j
Λi j exp(κ

2V̄i j ),

Mi j (u) := exp

(
− (qi − q j + 2κV̄i j )

2

2(vi + v j + 2V̄i j )

)
,

Li j (u) := vi (q j − 2κV̄i j ) + (v j + 2V̄i j )qi
vi + v j + 2V̄i j

,

Pi j (u) := vi (v j + 2V̄i j )

vi + v j + 2V̄i j
+ Li j (u)(Li j (u) − 2qi ),

Ei (x, u) := S

2

[
2Q(x)vi + 2Q(x)q2i − Q2(x)qi − 3vi qi − q3i

]
,
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Table 1 Definition and plausible range of values of the parameters of the model (1)–(7)

Parameter Definition Range Typical Unit

m Spatial dimension of the geographic space {1, 2, 3} 1, 2 –

N Number of species N 1, 2 –

Di (x) Diffusion coefficient of the i th species dispersal [0, 25] 1 X2/T

Ki (x) Carrying capacity of the environment for i th species (0, 10] 1 N/Xm

Ri (x) Maximum population growth rate of i th species [0.1, 10] 2 1/T

Vi Variance of phenotype utilization within i th species [0.25, 25] 4 Q2

κ Asymmetric impact factor of phenotypic competitions [0, 1] 0 1/Q

S Measure of the strength of stabilizing selection [0, 2] 0.2 Q−2/T

U Rate of increase in trait variance due to mutation [0, 0.2] 0 (0.02) Q2/T

Q(x) Optimal trait value for the environment [0,∞) Linear Q

|dxQ(x)| Magnitude of the gradient of the optimal trait [0, 10] 0.2 Q/X

The typical values given here are the values used in the numerical studies of Sects. 4 and 5 . When m > 1,
the range of values specified for Di (x) can be considered for each entry of Di (x) ⊂ R

m×m. Typically, Di is
assumed to be diagonal. The additional typical value 0.02 provided for U is suggested in Sect. 3.2 based on
estimates available in the literature. However, U = 0 is used for the numerical simulations of Sects. 4 and
5 . The typical value “Linear” specified for Q means that Q is typically considered to be a linear function
of x over Ω

Yi (x, u) := S

2

[
2Q(x)vi qi − 2Q(x)q3i − Q2(x)(vi − q2i ) − 3v2i + q4i

]

+ U, i, j ∈ {1, . . . ,N}. (7)

In (1)–(3), the partial derivative with respect to t is denoted by ∂t , the gradient with
respect to x is denoted by ∂x , the divergence with respect to x is denoted by div,
and the standard inner product in Rm is denoted by (·, ·)Rm . Definitions of the model
parameters and plausible ranges for their values are given inTable 1. Further discussion
on parameter units and the choice of typical values for the computational results of
this paper are provided in Sect. 3. Note that Di (x) ∈ R

m×m, whereas the rest of the
parameters are scalar valued. Moreover, S, U, Vi , and κ are assumed to be constant all
over the habitat, whereas Di , Ki , Ri , and Q can be variable in space. All these model
parameters may also vary in time, although their dependence on t is not explicitly
shown in the equations.

Remark 1 (Boundary conditions) In general, different boundary conditions can be
imposed on themodel (1)–(7) based on the spatial dimension and specific environmen-
tal conditions of a problem under study. For the general purpose of the computational
studies performed in the present work, we assume that there is typically no phenotypic
flux through the boundary of a one-dimensional habitatΩ = (a, b). This, as explained
in “Appendix A.5,” simply implies the following homogeneous Neumann conditions

∂xni = 0, ∂xqi = 0, ∂xvi = 0, i = 1, . . . ,N on {a, b} × [0, T ]. (8)
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This boundary condition is equivalent to reflectively extending the equations over R.
For a two-dimensional rectangular habitat, the same reflecting boundary condition
can be considered at all boundary lines. However, the environmental gradient in trait
optimum, such as latitudinal gradient, is often assumed to occur only along one spatial
dimension, say in the x1 direction. In this case, the reflecting boundary condition
described above can be typically considered at habitat boundaries along the x1-axis.
Across the boundary lines in the x2 direction, periodic boundary conditions can be
used provided the other model parameters also take the same values at opposing points
on these boundary lines. In particular, periodic extension is not recommended along a
spatial dimension that presents monotonic changes in the environmental trait optimum
Q, because the periodic extension of Q in this case will have jumps at the boundaries
along this spatial dimension. Since the species’ trait means qi tend to converge to
Q in response to the force of natural selection, numerically computed solutions of
qi will then develop large gradients, ∂xqi , near these boundaries. This can result in
singularities in numerical computations of the solutions, particularly due to the term
(∂xqi ,Di∂xqi )Rm in (3) which will take growing values near such boundaries. ��

3 Model Parameters

The behavior of the model described in Sect. 2 will depend on the values of its param-
eters, which will differ from one species to another. Although the model is fairly
abstract, meaningful ranges of parameter values can still be identified. In this section,
we discuss parameter values and their units as given in Table 1. We also specify the
typical values of the parameters that are used in Sects. 4 and 5 for numerical studies
of the model.

3.1 Parameter Units

Biological species are diverse in their level of abundance, growth rate, dispersal range,
and the nature of their functional traits. This implies that an appropriate choice of units
for the physical quantities of the model such as time, space, populations density, and
trait values must be species dependent. For this, we first select one of the species from
the community of N species in the model as a representative species. The physical
units are then chosen (in principle) based on specific measurements made on this
species. The representative species can be selected, for example, as the species that is
best adapted to the environment, is most widely spread, or has the widest trait niche
among the community.

Let T denote the unit of time. We set 1 T to be equal to the mean generation time of
the representative species. This is a natural choice of time unit to analyze population
dynamics of species over evolutionary time scales; see, for example, the time unit
used by Estes and Arnold (2007). It also makes the model compatible with common
experimental approaches in estimating parameters such as the strength of phenotypic
selection, which is often estimated bymeasuring changes in themean phenotype of the
population in one generation. Moreover, choosing generation time as unit of time can
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make the predictions of the model comparable with the results obtained from discrete-
time individual-based models which usually describe the evolution of the population
at generation time steps; see, for example, the models used by Polechová and Barton
(2015) and Bridle et al. (2010).

To set the unit of space, denoted by X, we first consider a one-dimensional habitat,
that is, x ∈ R. It can be seen in Eqs. (1)–(3) that rescaling the space as x �→ kx
leaves the equations unchanged, provided the diffusion coefficients Di are rescaled
accordingly as Di �→ Di/k2. Using this flexibility in the equations and having set
the unit of time, we choose the unit of space so that the dispersal coefficient of the
representative population becomes unity, that is, 1 X is the root mean square dispersal
distance of the population in 1 T divided by

√
2. Since the population dispersal may

vary at different locations of the habitat, the measurements for setting the unit can be
done based on a local subpopulation at the core of the population or at regions where
dispersal is not affected by environmental barriers. For multi-dimensional habitats,
the same approach can be used to set the unit of space for each spatial dimension
independently. We denote the units associated with all dimensions by X, noting that X
may refer to different physical scales for different spatial axes.

Similarly, rescaling the population density of the species as ni �→ kni does not
change the equations of the model provided the carrying capacity of the environment
is rescaled accordingly as Ki �→ kKi . Therefore, having set the unit of space, we
choose the unit of measurement for population abundances, denoted by N, so that
the carrying capacity of the environment for the representative population becomes
unity. That is, 1 N is equal to the carrying capacity of the environment for 1 Xm unit
of habitat volume. The required measurement of the carrying capacity can be done
locally at the core of the representative population where it has the largest and most
stable population density.

Finally, we denote the unit of measurement for the quantitative trait by Q, and
set 1 Q to be equal to one standard deviation of the trait values at the core of the
representative population, where the population likely shows highest variance in the
individual’s trait values. This is a common choice of unit for quantitative traits, which
provides generality for quantitative models of evolutionary processes by making them
independent of the diverse nature of the quantitative traits across different species
(Kingsolver et al. 2001; Lande and Arnold 1983; Estes and Arnold 2007; Kirkpatrick
and Barton 1997; Case and Taper 2000).

3.2 Parameter Values

Based on the units chosen in Sect. 3.1 for measuring physical quantities of the model,
plausible ranges of parameter values can be suggested as follows.

Range of Values for Carrying Capacities and Dispersal Coefficients
The choices of units described in Sect. 3.1 suggest a typical value of 1 for Ki and

diagonal entries of Di . To take into account the heterogeneity of the environment and
variations among species, we suggest a range of values for these parameters within one
order of magnitude above and below these typical values. Note that Di ≥ 0, whereas
the equations of the model require Ki to be nonzero, that is Ki > 0.
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Range of Values for Maximum Growth Rates
The maximum population growth rate Ri is attained by a local population of the

i th species that is fully adapted to the environment, has access to abundant resources,
is not involved in any effective interspecific competition with other species, and has
low density so that the effect of intraspecific competition is minimal. It is shown in the
literature that if the generation time is chosen as the unit of time T, as is the case here,
then the maximum intrinsic growth rate will be a demographic invariant within some
homogeneous taxonomic groups (Niel and Lebreton 2005). For a variety of taxa such
asmammals, birds, sharks, and turtles, themaximumpopulation growth per generation
is shown to be approximately equal to 1, (Hatch et al. 2019; Dillingham et al. 2016;
Niel and Lebreton 2005). Under optimal laboratory conditions, an estimate of the
intrinsic rate of natural increase for a shorter-lived species such as fruit fly is given
by Emiljanowicz et al. (2014, Table 2) as 0.179 per capita per day. With the estimate
of mean generation time provided for this species as T = 30.6 days, the maximum
population growth of the species can then be estimated as 0.179 × 30.6 = 5.48T−1.
For a variety of other species of insects, the estimates given by Pianka (2000, Table 8.2)
and Birch (1948) for the maximum population growth rate vary within the range of 0.9
to 9.6T−1. Moreover, the estimates given by Pianka (2000, Table 8.2) for two species
of Protozoa lie within 0.1–0.6 T−1. Therefore, considering these sample values, we
suggest the range of values for Ri to be between 0.1 and 10T−1. We choose a typical
value of Ri = 2T−1 for the numerical studies of this paper.

Range of Values for the Strength of Stabilization Selection
Estimates of the strength of phenotypic selection are available in the literature for a

variety of species (Kingsolver et al. 2001; Stinchcombe et al. 2008). These estimates
are usually provided in the form of standardized linear (directional) and quadratic
(stabilizing/disruptive) selection gradients, as defined by Lande and Arnold (1983).
In order to be able to use these estimates for suggesting a plausible range of values
for S, we must first identify the relation between this parameter and the standardized
selection gradients. For this, we first establish an adaptive landscape associated with
the model, based on the approximate evolution of a single population in the absence
of population dispersal, interspecific competition, and mutation.

Let the population density of individuals with phenotype p be denoted by np(t) :=
n(t)φ(t, p), where φ gives the relative frequency of p as defined in “Appendix A.1.”
Note that the dependence of variables on x and the numeration index i = 1 are dropped
for the single (N = 1) local population under consideration. Over a small time step τ ,
the population density evolves approximately as

n p(t + τ) − n p(t) = τg(t, p)n p(t),

where g(t, p) gives the intrinsic growth rate of the population as defined by Eq.
(17) in “Appendix A.1.” Therefore, after one generation time we have n p(t + 1) ≈
(1 + g(t, p))n p(t), which identifies the fitness function f (t, p) := 1 + g(t, p) for
individuals with phenotype p. Corresponding to this phenotypic fitness function, an
adaptive landscape can be defined as
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Fig. 1 Distribution of the estimated values of S based on the dataset provided by Kingsolver et al. (2008)
(Color figure online)

F(n, q, v) :=
∫

R

f (t, p)φ(t, p)dp = 1 +
∫

R

g(t, p)φ(t, p)dp,

which particularly relates the mean value of the fitness across the population to the
mean value of the phenotypic trait (Hendry 2016). Themean growth rateG(n, q, v) :=∫
R
g(t, p)φ(t, p)dp can be obtained from (4) by setting N = 1 and κ = 0, which

yields

F(n, q, v) = 1 + G(n, q, v) = 1 + R

(
1 − n

K

√
V

v + V

)
− S

2

[
(q − Q)2 + v

]
.

(9)

See “Appendix A.5” for the derivation of G in the general case.
Standard measures of selection are then obtained by calculating the slope and

curvature of the logarithmically scaled adaptive landscape along the mean trait axis
(Estes and Arnold 2007; Lande 1979). That is, ∂q log F(n, q, v) provides a measure
of linear selection, and ∂2q log F(n, q, v) provides a measure of quadratic selection.
These estimates are related to the standardized directional selection gradient β and
the standardized stabilizing/disruptive selection gradient γ as ∂q log F = β and
∂2q log F = γ − β2; see Phillips and Arnold (1989) and the derivation given by
Estes and Arnold (2007, Suppl. Appx.). Now, using (9), a first-order approximation
of log F along the q-axis gives log F ≈ G. Therefore, we have

β = ∂q log F(n, q, v) ≈ ∂qG(n, q, v) = −S(q − Q),

γ − β2 = ∂2q log F(n, q, v) ≈ ∂2qG(n, q, v) = −S. (10)

Then, plausible values for S can be obtained as S ≈ −γ + β2, using the estimates of
β and γ available in the literature. Note that our assumption of stabilizing selection,
specified as assumption (ii) in “Appendix A.4,” implies that γ < 0 and S > 0.

Estimates of linear or quadratic selection provided by 63 studies for a total number
of 62 species have been analyzed by Kingsolver et al. (2001) and the resulting dataset
has been made available by Kingsolver et al. (2008). Here, we choose those species
in this database for which both estimates of γ and β are available and have γ < 0.
This results in a dataset of 199 estimates, based on which we obtain a set of realistic
values for S. The distribution of these estimated values are shown in Fig. 1, along
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with basic statistical measures of the components of the estimates. The results show
a median value of 0.13 and a 95th percentile of 0.92 for S. However, a fair amount
of these estimates are likely to be underestimates due to an error made in some of the
studies when using quadratic regression coefficients for estimating γ . This error was
identified by Stinchcombe et al. (2008), and results in an underestimation of |γ | by
a factor of 2. Specifically, analyzing 673 estimates of γ from 32 additional studies,
Stinchcombe et al. (2008) show an underestimation of 25–40% in the typical value
of γ . Therefore, taking into account the possibility of underestimation, we suggest a
typical value of 0.2 and a maximum value of 2 for the parameter S of the model.

Remark 2 (Constraint on the values of S and R) Equations of the model impose a
constraint on the maximum value that S can take, or the minimum value that R can
take, with respect to each other. To find this constraint, consider a single population of
minimal density n � K, so that the effect of intraspecific competition is negligible.
Suppose that the population is well adapted to the environment, that is, q−Q ≈ 0. For
this population, we expect a mean fitness of F > 1, or equivalently, a mean growth
rate of G > 0 in (9), so that this minimally constrained population can grow. This
gives the constraint

R − S

2
v > 0, (11)

where v is the variance of trait valueswithin the population. Since v can increase during
the growth of the population, as a rough estimate we expect that (11) is satisfied at least
for v = 1Q2, that is the variance of trait values in the representative population used
to determine the unit of the trait, as described in Sect. 3.1. This gives the approximate
constraint S < 2R. ��
Range of Values for the Mutational Rate of Increase in Trait Variance

The amount of increase in genetic variance of phenotypic traits per one generation of
mutation—after being standardized with (divided by) the estimates of environmental
variance of the trait—is known as mutational heritability in the literature. Estimates
of this dimensionless quantity are available for a variety of species (Houle et al. 1996)
and can be used here to obtain biologically reasonable values for U. Note that the
environmental trait variance is (1−H2) times the total phenotypic variance, where H2

denotes the broad sense heritability (Visscher et al. 2008).Moreover, since the standard
deviation of the phenotypes at the core of a representative population is chosen here as
the unit of trait, as described in Sect. 3.1, the typical value of the total trait variance in
ourmodel is expected to be approximately 1Q2. Therefore, the estimates of mutational
heritabilities provided by Houle et al. (1996, Table 1), after being multiplied by the
factor (1 − H2), give plausible values for U.

The standardized values given by Houle et al. (1996, Table 1) are approximately in
the range [0.1, 30] × 10−3. Typical values of heritability for fitness-related traits, as
given by Visscher et al. (2008, Figure 1) for a number of different species, range from
0.05 to 0.3. These results can suggest [0.1 × (1 − 0.3), 30 × (1 − 0.05)] × 10−3 ≈
[7 × 10−5, 0.029]Q2/T as an approximate range of values for U. Specifically, the
standardized estimates of mutational rate of increase provided by Houle et al. (1996,
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Table 1) for Daphnia pulex are in the range [0.8, 3.3] × 10−3, and for Drosophila
melanogaster are in the range [0.1, 13.5] × 10−3. Values of heritability given by
Visscher et al. (2008, Figure 1) for fitness-related traits in Daphnia and Drosophila
are approximately 0.3 and 0.18, respectively.Noting that not all the traits considered by
Houle et al. (1996, Table 1) are fitness traits, these results give the estimates [0.8×(1−
0.3), 3.3× (1− 0.3)]× 10−3 ≈ [0.0006, 0.0023]Q2/T and [0.1× (1− 0.18), 13.5×
(1 − 0.18)] × 10−3 ≈ [8 × 10−5, 0.01]Q2/T for the range of values that U may take
for Daphnia and Drosophila, respectively.

In addition to providing estimates of the mutational rate of increase in trait variance
relative to the environmental variance, Houle et al. (1996) also provide estimates
of the rate relative to the standing genetic variance. Noting that genetic variance
is equal to H2 times the total phenotypic variance (Visscher et al. 2008), we can
use similar calculations as given above to obtain additional estimates of values
for U. The estimates provided by Houle et al. (1996, Figure 4) are in the range
[10−2.75, 10−1.25] ≈ [0.002, 0.056], relative to the genetic variance. Therefore, con-
sidering the values of heritability from 0.05 to 0.3, as given above, we obtain a range of
possible values for U as [0.002×0.05, 0.056×0.3] ≈ [0.0001, 0.017]Q2/T. It should
be noted that, since in our model we implicitly assume that variation in phenotypes
is mainly caused by genetic effects, that is H2 ≈ 1, we expect to use slightly larger
values than those estimated here for the parameter U in our model.

An extremely rough estimate for the range of values of U can be obtained from the
spatially homogeneous equilibrium value of trait variance in (1)–(3). For a perfectly
adapted solitary species at spatially homogeneous equilibrium, and in the absence of
environmental gradients and intraspecific competition, the equilibrium trait variance
v∗ is maintained by the mutation–selection balance U = Sv∗2; see Eq. (14) and the
discussions in Sect. 4. With a typical value of v∗ = 1Q2, this gives estimates of values
for U equal to the strength of stabilizing selection S, which as discussed above may
range from 0 to 2. However, gene flow over an environmental cline and intraspecific
competition are indeed prominent sources of producing genetic variation, which were
ignored in obtaining this rough estimate of the range of values for U. Therefore, a value
of U = 2Q2/T will be too extreme to be realistic, although in shallow environmental
gradients we may expect the value of U to be relatively close to S.

Finally, considering altogether the estimates and sample values provided above, we
suggest a plausible range of values for U as [0, 0.2]Q2/T, with a typical value of 0.02.
However, we set U = 0 in all of the computational studies presented in this paper,
except for the results discussed in Remark 5 in Sect. 4. This is because the inflation
caused by mutation in species’ trait variance does not affect the conclusions of our
numerical studies; see Remark 5 for details.

Range of Values for the Variance of Phenotype Utilization Distributions
We suggest plausible values for the variance parameter Vi of phenotype utilization

distributions, as defined by (22) in “Appendix A.2,” by first noting that resource uti-
lization curves, as described in “Appendix A.2,” are often used to quantify species’
niches (Colwell and Futuyma 1971; Roughgarden 1979; Pianka 1974). In particular,
the variance of utilization curves can quantify the within-phenotype component of a
species’ niche breadth. For categorical resources such as food type or microhabitats,
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comparative quantification of species’ niche can be performed for a fairly large com-
munity of species; see, for example, the quantification by Pianka (1973). However,
estimation of the parameters of species’ environmental niche may not be practica-
ble for a continuum of quantitative resources. The subsequent resource-phenotype
identification described in “Appendix A.2” is also hard to establish.

By contrast, the trait-based niche quantification approach proposed by Ackerly
and Cornwell (2007) and advocated by Violle and Jiang (2009) seems to provide a
more straightforward method for estimating the variance of phenotype utilization.
In this approach, a species’ niche is defined directly based on trait values instead of
environmental parameters. Thebreadth of a species’ trait niche is then simplymeasured
as the total intraspecific trait variation across the species over the entire range of its
habitat. To suggest a typical value for Vi , we assume that the representative population
is composed of generalist individuals, so that Vi is comparable to the species’ trait
niche breadth. Based on the specific choice of trait unit described in Sect. 3.1, the
standard deviation of the trait values at the core of the population is approximately 1Q.
However, the intraspecific trait variation can increase due to environmental gradients
as the population spreads and fills more of its niche. To take this partially into account,
we roughly consider the width of phenotype utilization curves to be twice as large as
the standard deviation of the trait at the core, giving a typical value of 4 for Vi . We
suggest a range of values between 0.25 and 25 to include variations due to adaptive
evolution and variations among the species in the community.

Range of Values for the Asymmetric Competition Factor
For κ , we choose a typical value of 0, which implies symmetric intraspecific com-

petition between phenotypes. Since κ is the rate of an exponential growth in the total
phenotype utilization, given by (18) in “Appendix A.2,” we expect κ to be relatively
small. Therefore, we suggest a maximum value of 1, which according to (23) implies
an asymmetric competition of factor 2V̄i j between phenotypes.

Range of Values for the Environmental Trait Optimum
To suggest ranges of values and patterns of variation for the environmental trait

optimum Q, first note that the equations of the model (1)–(6) are invariant to the
additive changes

Q �→ Q + c, qi �→ qi + c, i = 1, . . .N,

where c is a constant. This can be seen by noting that Ci j and Mi j in (7) are invariant
to this additive change, whereas

Li j �→ Li j + c,

Pi j �→ Pi j − c(2qi + c),

Ei �→ Ei − S

2
[(qi − Q)2 + vi ]c,

Yi �→ Yi + S

2
[(qi − Q)2 + vi ]c(2qi + c).
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Substituting these changes in (4)–(6) gives the invariance of Gi , Hi , and Wi , and
subsequently the invariance of (1)–(3). Using this invariance property of the equations,
we can assume without loss of generality that Q is nonnegative everywhere onΩ . If Q
takes negative values in practice, it can always be shifted up by a positive constant c so
that it becomes nonnegative everywhere. This shift simply shifts the qi component of
the solutions by the same constant c, and has no impact on the evolutionary behavior of
themodel.Moreover, the constant c can always be chosen so that it shifts theminimum
value of Q to zero.

Finally, the spatial pattern of variation in Q is typically assumed to be monotonic
along one spatial dimension. This can, for example, represent latitudinal or elevational
clines in the optimal trait. Here, we further assume that these monotonic changes are
linear. The slope of this linear trait optimum gradient, measured here in units of phe-
notypic standard deviations per (1/

√
2 times) root mean square dispersal distance in

one generation time, is a key to the differing conclusions by Case and Taper (2000) and
Kirkpatrick and Barton (1997). An estimate for the slope of optimum gradient might
in principle be obtained by measuring the trait values at the core of a well-established
representative population which can be considered to be closely adapted to the envi-
ronmental optimum. Although such measurements are available for some species over
certain geographic regions, for example, for a species of damselflies in Japan (Taka-
hashi et al. 2016), they cannot by themselves be used to provide estimates of the
gradient of Q for the model presented here. This is because the unit of space X used in
the available experimental studies, for example, latitude degrees as used by Takahashi
et al. (2016), is not consistent with the choice of X suggested in Sect. 3.1—which
requires both measurements of dispersal distance and generation time. Therefore, due
to the lack of consistent experimental results, here we intuitively suggest a range of
values from 0 to 10 for the magnitude of the gradient of Q, with the expectation that
the values near 10Q/X will practically represent an environmental barrier. We choose
a typical value of 0.2Q/X, which means one unit of standard deviation change in Q
per five units of space.

It would be worthwhile then to compare this choice of a range for trait optimum
gradient with those suggested by Kirkpatrick and Barton (1997) and Case and Taper
(2000). It should be noted, however, that the compatibility of those suggested ranges
of values with the values that are expressed based on our choices of units is not fully
ensured, but is likely to hold after a certain rescaling as described below.

Kirkpatrick and Barton (1997), based on what they acknowledged to be slim avail-
able evidence, suggested that a plausible range for standardized environmental gradient
could have a [maximum] value of at least 0.25. They denote this standardized gradient
by b∗ and define it as the optimum gradient measured in units of phenotypic standard
deviations per dispersal [distance]. Therefore, the range of values suggested by Kirk-
patrick and Barton (1997) would be comparable to our suggested values, after being
divided by

√
2, if we assume that they measure one unit of dispersal distance over one

generation time. Although the unit of time is not clearly specified by Kirkpatrick and
Barton (1997), this assumption is likely to be valid based on the way they define b∗
and the dispersal coefficient.

Case and Taper (2000) redefine b∗, which we denote by b∗
ct to avoid confusion, as

the optimum gradient expressed in units of phenotypic standard deviation per physical
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Table 2 Statistical distribution of estimated values of dispersal distance (in km) per generation for 512
species of Amphibians, 385 species of Reptiles, 4829 species of Birds, and 1160 species of Mammals

Minimum Maximum Mean Median 5th percentile 95th percentile

Amphibians 0.0085 17.1 0.41 0.25 0.083 1.00

Reptiles 0.010 16.0 0.65 0.15 0.028 1.83

Birds 3.18 682 38.3 17.7 6.63 148

Mammals 0.10 154 2.84 0.38 0.15 12.0

The estimated values are calculated using the dataset provided by Ohashi et al. (2019)

distance. However, they do not clearly specify the unit of distance. They suggested
that a plausible range for b∗

ct could be [0.0001, 0.01] which, according to the sample
values they provide, is likely to be based on the choice of kilometers as the unit
of physical distance. Therefore, to convert the range [0.0001, 0.01]Q/km to a range
compatible with our choices of units, we need to rescale it by plausible values of the
root mean square dispersal distance measured in km over one generation time, as well
as the factor 1/

√
2. There is evidence in the literature that mammalian species may

showmaximum natal dispersal distances ranging from a few tens of meters to roughly
300 km (Whitmee and Orme 2013). Moreover, for a large number of species in four
different taxonomic groups, estimates for both dispersal distance (in km) per year and
generation time (in year) are provided by Ohashi et al. (2019). This allows us to find
estimates of dispersal distance in km per generation for the species of this dataset. The
statistical distribution of such estimates is given in Table 2. Based on these sample
ranges of values, we will therefore take values of dispersal distance (per generation) in
the broad range from 0.01 km to 300 km to be plausible, at least for terrestrial species.

Now, multiplying the suggested range [0.0001, 0.01]Q/km for b∗
ct by 1/

√
2 and

our minimum and maximum plausible values of dispersal distance per generation, we
obtain the range [0.0001 × 0.01/

√
2, 0.01 × 300/

√
2] ≈ [7 × 10−7, 2.1]Q/X that

might have been considered plausible by Case and Taper (2000) based on our choices
of units. Note that this range includes the value 0.25/

√
2 ≈ 0.18Q/X put forth by

Kirkpatrick and Barton (1997), but clearly extends several orders of magnitude below
that value.

4 Range Dynamics of a Single Species

To demonstrate general predictions of the model on the range dynamics and intraspe-
cific trait variations of a species, we qualitatively study the solutions of the model for
a solitary species over a one-dimensional habitat. This can, for example, represent the
spread of an invasive aquatic species in a river, or the distribution of a species with
an ecological niche restricted along a coastline. Therefore, m = 1 and N = 1, and
we use the typical values given in Table 1 for the rest of the model parameters, with
certain alterations independently specified in each study. Other than the trait optimum
Q, which is considered to be linearly increasing over Ω , the rest of the parameters are
assumed to be constant. As a result, the equations of the model (1)–(7) are reduced to
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∂t n = D∂2x n +
(
R − R

K

√
V

v + V
n − S

2

[
(q − Q)2 + v

])
n, (12)

∂t q = D∂2x q + 2D∂x (log n)∂xq − S(q − Q)v, (13)

∂tv = D∂2x v + 2D∂x (log n)∂xv + 2D|∂xq|2 + R

K

√
V

v + V

nv2

2(v + V)
− Sv2 + U,

(14)

where, since N = 1, the numeration index i = 1 of the variables and parameters
is dropped for notational simplicity. Moreover, the dependence of n, q, and v on
x and t , as well as the dependence of Q on x , are not shown for the simplicity of
exposition.

We set the habitat as Ω = (−50 X, 50 X) ⊂ R for all computational studies of this
section, andwe consider reflecting boundary conditions as described in Remark 1. The
details of the numerical scheme used to compute the solutions are given in “Appendix
B.” The implementation of the numerical simulations in MATLAB R2021a is avail-
able online; see the Code Availability section. Note that, the qualitative behavior of
the model shown in this section for a one-dimensional habitat is also equivalently
observable in a two-dimensional habitat.

4.1 Range Expansion Under Constant Environmental Gradient

We assume that the environmental trait optimum has a constant gradient dxQ =
0.2 Q/X, which is the slope of the black line in Fig. 2b. The species is introduced at the
center of the habitat with a density given as n(x, 0) = 0.5 sech(|x |/√2). It is assumed
that this initial population is perfectly adapted to the environment at the center, that is,
q(0, 0) = Q(0), and has a linearly varying trait mean of slope ∂xq(x, 0) = 0.6 dxQ for
all x ∈ Ω . We further assume that the initial population has a constant trait variance
of v(x, 0) = 1 Q2.

Figure 2 shows the solutions of the model (12)–(14) over the computation time
horizon of T = 50 T. It can be seen that the species’ population density initially
grows to an upper limit relatively fast, and then the population invades the entire
habitat in the form of a traveling wave. As the population spreads over the habitat, it
successfully adapts to new areas in response to the force of natural selection, and its
mean trait gradually converges to the optimal trait. The initially constant profile of the
population’s trait variance evolves quickly to a bell-shaped profile, showing a larger
trait variance at the core of the population with a gradual decline towards the edges.
The maximum trait variance at the population center evolves fairly slowly to an upper
bound as the population expands its range across the habitat.

To investigate further the invasive range dynamics of this solitary species, a sample
curve is highlighted in the solutions shown in Fig. 2. At the effective edges of the
population, that is considered to correspond to the inflection points on the curve of
the population density, the diffusion term D∂2x n in (12) is zero. However, the mean
intrinsic growth rate G, given by the term inside the parentheses in (12) and shown in
Fig. 2d, is positive at these edge positions. This implies that the population density n
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(a) (b)

(c) (d)

Fig. 2 Typical range dynamics of a single species in a one-dimensional habitat with a linear trait optimum.
Here, m = 1, N = 1, and the rest of the model parameters take their typical values given in Table 1. Curves
are shown at every 2 T, and the thick orange curves indicate the initial curves at t = 0 T. Arrows show the
direction of evolution in time. In each graph, a sample curve at t = 8 T is highlighted in red. Dashed lines
indicate the effective edges of the population at t = 8 T, associated with the inflection points on the curve
of population density, at which the trait variance takes its minimum value. The solid black line in b shows
the environmental trait optimum Q (Color figure online)

is not stationary at the edges, which confirms the fact that the sample solution curve
is a traveling wave.

The curve of trait mean highlighted in Fig. 2b shows substantial adaptation at the
core of the population, but considerable failure in adaptation near the edges. This
adaptation profile is mainly due to the effect of gene flow and is observed, after few
generations, even if the initial population is perfectly adapted everywhere, that is, even
if q(x, 0) = Q(x) for all x ∈ Ω . This profile can be explained as follows. The density
of the population is nearly uniform at its core, and hence there is a fairly symmetric
gene flow to a core location from its adjacent areas located on the upper and lower
parts of the cline. Due to this symmetry, gene flow does not significantly affect the
mean value of the trait at core locations and adaptation is successfully maintained by
natural selection. Near the edge, however, the population density varies sharply and
the gene flow is highly asymmetric. At the left edge shown in Fig. 2b, for example,
gene flow is predominantly from the upper points on the cline. Therefore, near the left
edge, the mean value of the trait is increased above the optimal value due to the effect
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of this asymmetric gene flow. As a result, the curve of trait mean is gradually flattened
and departs from the optimal curve as it approaches the left edge. A similar process,
but in opposite direction, flattens the curve below the optimal value at the right edge.

The bell shape of the trait variance is a result of gene flow and the specific adaptation
pattern described above.At core locations, the population iswell adapted to the optimal
cline and, due to the relatively large gradient of the cline, gene flow from adjacent
areas generates large phenotypic variations among central individuals. Near the edges,
however, the population fails to adapt to the optimal cline and the curve of trait mean
flattens. Therefore, due to the low gradient in the trait mean near the edges, gene
flow from adjacent areas does not substantially contribute to phenotypic variations in
marginal individuals. As a result, trait variance constantly declines from core to edges,
in parallel with the decline in the gradient of the trait mean.

The profile of variations in the trait mean and the trait variance described above
are consistent with experimental observations available in the literature. For example,
Takahashi et al. (2016) have shown geographic variations in abdomen length and wing
loading of two closely related species of damselflies along a latitudinal cline in Japan.
The patterns of variation in both of these phenotypic traits indicate that the species
are well adapted to the environmental gradient at the core of their range, whereas
they are significantly maladapted at their range margins. Additionally, variations in
heterozygosity and the Garza-Williamson index, as the two indicators of genetic diver-
sity measured by Takahashi et al. (2016), show drastic decline in species’ genetic and
phenotypic variation at their range margins where maladaptation is observed.

4.2 Effect of Steep Environmental Gradients

A major difference between the predictions of the present model and predictions of
the models that assume constant trait variance (Kirkpatrick and Barton 1997; Case
and Taper 2000) appears in response to steep environmental gradients. To show this,
we first repeat the computation of Sect. 4.1 for a species under a steep environmental
gradient of dxQ = 2 Q/X, that is 10 times larger than the typical gradient considered
in Sect. 4.1. Here, we initialize the computation with a better adapted population with
∂xq(x, 0) = 0.9 dxQ, to avoid the numerical singularities that would otherwise occur
at initial iterations of the computation—mainly due to large trait mismatch, |q − Q|,
occurring near the boundary of the habitat because the environmental gradient is very
steep. The rest of the computation parameters take the same values as used in Sect. 4.1.

The population density and trait variance of the species is shown in Fig. 3. It can
be seen that the species is still able to expand its range in the form of a traveling wave,
but with a lower speed compared to the wave speed at the typical gradient value. More
importantly, the initially small value of the trait variance, v(x, 0) = 1Q2, evolves
quickly to a significantly larger value. In fact, since the population here is adapting
itself to an optimal phenotype with much steeper variation along the habitat, the mean
phenotypes diffused to a given location within the species’ range have a much wider
range of values. As a result, gene flow in this case generates large phenotypic variations
in the population. Similar to the variance profile described in Sect. 4.1, the trait variance
declines at the range margins due to the effect of asymmetric gene flow. Note that,
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(a) (b)

Fig. 3 Range dynamics of a species in a one-dimensional habitat under a steep environmental gradient
of dxQ = 2Q/X. The rest of the model parameters take their typical values given in Table 1. The same
description as given in Fig. 2 holds here for the curves, arrows, and dashed lines. The evolution curves of
q and G are not shown as they qualitatively resemble the curves shown in Fig. 2b, d, respectively (Color
figure online)

for dxQ = 2Q/X considered here, the models that assume constant trait variance
show an evolutionarily stable limited range, for which the mean intrinsic growth rate
vanishes to zero at the inflection points on the range edges, and remains negative
beyond. Examples of such limited range dynamics are provided by Kirkpatrick and
Barton (1997) and hence are not presented here.

Next, to see inmore detail the differences resulting from the evolution of phenotypic
variance in the range dynamics of the species, we additionally generate a constant-
variance version of the model and repeat the computations described above for both
models, andwith different values of the environmental gradient. The constant-variance
model is obtained by fixing v(x, t) = Vp in (12)–(14), that is, by omitting (14)
and replacing v by Vp in (12) and (13). The resulting model is equivalent to the
model presented by Case and Taper (2000) and Kirkpatrick and Barton (1997). We set
v(x, 0) = 1Q2 for our variable-variance model and, correspondingly, Vp = 1Q2 for
the constant-variance model.

For each value of the environmental gradient, solutions of the equations are calcu-
lated for a sufficiently long period of time. The approximate speed and amplitude3 of
the population’s traveling waves are then shown in Fig. 4. Note that, at every gradient
value, the position of a point on the edges of the population density waves initially
changes nonlinearly in time. However, when the effect of initial transient dynamics
vanishes, the variations in the edge positions eventually become linear with respect to
time. The slope of these linear variations is shown in Fig. 4a as an approximate value
of the wave speed at each gradient value. Moreover, the amplitude of the traveling
wave at the final time of computations for each gradient value is shown in Fig. 4b as
an approximate value of the wave amplitude.

3 Here, we define the amplitude of a population’s traveling wave solution as the (steady) peak value of the
population’s density during its range expansion regime. In the results presented in Fig. 4b, the traveling
wave amplitudes are approximately calculated as the density of the population at its center when it has
reached a nearly steady value.
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(a) (b)

Fig. 4 Impact of the gradient of the environmental trait optimum, dxQ, on a species’ invasion waves over
a one-dimensional habitat. Here, m = 1, N = 1, and the rest of the model parameters take their typical
values given in Table 1. The curves shown in green are obtained based on the assumption of constant trait
variance, as in the models of Case and Taper (2000) and Kirkpatrick and Barton (1997), with v(x, t) being
fixed at Vp = 1. The curves shown in purple are obtained when the trait variance is free to evolve in time
based on the present model (12)–(14). aVariations in the traveling speed of the invasion waves. bVariations
in the amplitude of the invasion waves (Color figure online)

Figure 4 shows that the constant-variance model predicts a relatively sharp decline
in the speed of invasion waves as the environmental gradient increases, but no change
in waves’ amplitude. Kirkpatrick and Barton (1997) and Case and Taper (2000) show
that a stable limited range is formed if the gradient is increased beyond the value at
which wave speed becomes zero. Eventually, the population becomes extinct if the
gradient is further increased to very large values. However, removing the assumption
of constant phenotypic variance, as in the present model, results in essentially different
predictions. It can be seen in Fig. 4 that, although the speed of invasion waves declines
(almost linearly) when the environmental gradient increases, the species is still able
to expand its range under much steeper gradients than what is predicted under the
constant variance assumption. Nonetheless, the amplitude of the species’ expansion
waves declines substantially at steep gradients and the population eventually vanishes
at extreme gradients. This implies that physical barriers, such as mountains or oceans,
which impose extreme environmental gradients on the species’ habitat can still prevent
the species’ range expansion.

The approximate wave amplitudes shown in Fig. 4b can be alternatively calculated
using the equations of a fully adapted homogeneous population. As the range dynam-
ics of the species shown in Figs. 2 and 3 suggests, population density and trait variance
eventually become homogeneous over Ω as t → ∞, and trait mean converges uni-
formly to Q. We denote this equilibrium state by (n∗, q∗, v∗), where n∗ > 0 and
v∗ ≥ 0. At this equilibrium, we have ∂xn∗ = 0, q∗ = Q, and ∂xv

∗ = 0. Moreover,
∂2x q

∗ = 0 since Q is assumed to be linear here. Therefore, from (12)–(14) we obtain

n∗ = K

R

√
v∗ + V

V

(
R − S

2
v∗

)
, (15)
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and

5Sv∗3 + (4SV − 2R)v∗2 − 4(U + 2D|dxQ|2)v∗ − 4(U + 2D|dxQ|2)V = 0.

(16)

Letting v∗ = Vp = 1 in (15) for the constant-variance model, we simply obtain
n∗ = 1.062 as the constant wave amplitude shown in Fig. 4b. For the variable variance
model, the cubic algebraic equation (16) has one and only one positive root for all
nonzero values of U + 2D|dxQ|2. The graph of this nonzero root with respect to
changes in the gradient dxQ appears to be approximately a straight line with positive
slope. Moreover, substituting this root into (15) for different values of dxQ provides a
graph of n∗ with respect to dxQ. With the parameter values considered in this section,
this graph gives an approximate curve of wave amplitudes as shown in Fig. 4b. Note
that n∗ = 0 in (15) when v∗ = 2R/S, which is a solution of (16) with |dxQ| =√

(2R2/SD) − U/2D = 6.325. This gives the value of the environmental gradient at
which the wave amplitude becomes zero and the population fails to survive.

Remark 3 (Effect of large dispersal coefficients) The dispersal coefficient D and the
square of environmental gradient |dxQ|2 appear together in the equilibrium equation
(16). This implies that, for a fixed value of dxQ, the invasion wave amplitude has the
same pattern of variation with respect to

√
D as it has with respect to |dxQ| shown in

Fig. 4b. Basically, this is because, as described in Sect. 3.1, a change of
√
D �→ k

√
D

in the dispersal coefficient can be equivalently absorbed by a rescaling of x �→ x/k
in the space, and consequently by a change of dxQ �→ kdxQ in the environmental
gradient. Note that, by the same calculations as performed above, the species fails to
survive if its dispersal coefficient is greater than (2R2/S|dxQ|2) − U/2|dxQ|2. ��
Remark 4 (Effects of maximum growth rate and strength of stabilizing selection)
For smaller values of R or larger values of S, the extreme environmental gradi-
ent |dxQ|max = √

(2R2/SD) − U/2D, above which the population cannot survive,
becomes smaller. This implies that a slowly growing species under strong stabilizing
selection is at a higher risk of extinction in the environments for which the species’
optimal trait has sharp spatial variations. Reduced dispersal in such environments can
help the species survive. ��
Remark 5 (Effect of genetic mutations) The computational results shown in Fig. 4
were obtained in the absence of genetic mutations, that is, by considering the typical
valueU = 0Q2/Tgiven inTable 1.WhenU �= 0,Eq. (14) implies that the trait variance
is inflated at the constant absolute rate U due to mutation. With an exceedingly large
value of U = 2Q2/T, which may appear to be unrealistic, we computed the solutions
of (12)–(14) using the same simulation layout as described above for the results shown
in Fig. 4.We verified that the curves of wave speeds andwave amplitudes did not differ
significantly from those of Fig. 4, meaning that the conclusions of this section are not
affected by the effect of mutation. To see this further, note that the critical value of the
trait optimum gradient |dxQ|max = √

(2R2/SD) − U/2D, beyond which the species
fails to survive, will be decreased significantly by the effect of mutation only if U
is sufficiently large compared with 4R2/S. However, for the typical values given in
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(a) (b)

Fig. 5 Impact of periodic environmental fluctuations on a species’ range dynamics in a one-dimensional
habitat. Here, m = 1, N = 1, and the rest of the model parameters take their typical values given in Table 1.
The period of abrupt fluctuations in the trait optimum is 2T. At the beginning of each period, Q is shifted
up by a factor of 5Q and remains at this value for the first half of the period. Then, it is shifted down by the
same factor to the initial value and remains at this value for the second half of the period. Curves are shown
at every 2T, and the thick orange curves indicate the initial curves at t = 0T. Arrows show the direction
of evolution in time. In each graph, a sample curve at t = 20T is highlighted in red. The solid black line
in b shows the initial value of Q, and the dashed line in b shows this initial value shifted up by a factor of
5/2Q (Color figure online)

Table 1, we have 4R2/S = 80Q2/T, which can be of about three orders of magnitude
larger than realistic values of U. For slowly growing species under strong phenotypic
selection, however, the effect of mutation may considerably decrease the critical value
of the trait optimum gradient. ��

4.3 Effect of Abrupt Environmental Fluctuations

An abrupt change in the curve of optimal phenotype may occur due to a rapid climate
change and can largely affect a species’ geographic range and abundance, particularly
when it occurs frequently. To observe the predictions of the model in response to these
changes in climate, here we initialize the computations at t = 0T using the solution
curves computed in Sect. 4.1 at t = 4T. However, we uniformly shift up the line of
trait optimumQ by a factor of 5Q at t = 0T. As a result, a high level of maladaptation
is immediately induced in the population and the population’s density and expansion
speed decline quickly. These impacts are more severe near the right margin of the
population’s range, where, as discussed in Sect. 4.1, the population initially has a trait
mean below the trait optimum and hence faces a greater maladaptation as the optimum
is shifted up.

The impact of the climate change described above is transient and gradually dis-
solves as the species adapts itself to the new environmental gradient. However, the
impacts of climate change can last longer and become more severe if rapid changes in
climate occur more frequently. For instance, Fig. 5 shows the results obtained when
abrupt fluctuations of magnitude 5Q occur periodically in the trait optimum. If the
period of these fluctuations is sufficiently small, as in Fig. 5, the abundance and expan-
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(a) (b)

Fig. 6 Population extinction caused by periodic abrupt fluctuations in the environmental trait optimum for
a species under strong phenotypic selection, S = 0.6Q−2/T. The rest of the model parameters take their
typical values given in Table 1. Environmental fluctuations are modeled as described in Fig. 5. The thick
orange curves are initial curves at t = 0T. Sample curves at t = 10T are highlighted in red. In a, curves
are shown at 20 logarithmically distributed time samples, with the first curve after the initial curve being
shown at t = 0.1T. The arrow shows the direction of evolution in time. In b, curves are shown at every
2T. The solid black line shows the initial value of Q, and the dashed line shows this initial value shifted up
by a factor of 5/2Q (Color figure online)

sion speed of the species is steadily affected by the fluctuations. The species’ range
margins, particularly the right margin, advance slower under the climate fluctuations
and the species’ density remains significantly below its environmental carrying capac-
ity. Moreover, note that the pattern of fluctuations will shape the long-term profile of
the population’s trait mean. Here, fluctuations are in the form of a square wave, with
Q shifting up by a factor of 5Q for the first half of the fluctuations’ period, and then
shifting back to its initial value for the second half. Regulated by the evolutionary
force of natural selection, the trait mean then converges to a line which is above the
initial Q by a factor equal to half of the periodic shift, that is, 5/2Q. This can be seen
in Fig. 5b.

The impacts of the periodic fluctuations described above can be more severe if the
fluctuations have larger amplitudes or the species evolves under stronger phenotypic
selections. For instance, if we repeat the computations of Fig. 5 with a stronger selec-
tion, S = 0.6Q−2/T, we obtain the results shown in Fig. 6. It can be seen that, in this
case, the population fails to withstand the climate fluctuations and becomes extinct.
Figure 6b shows that the natural selection is still regulating the trait mean at the best
possible value, that is 5/2Q above the initial Q. But, this does not give the population
the fitness required for survival under such a strong selection.

5 Range Dynamics of Two Competing Species

Interspecific competition is a determining factor in forming and limiting species’
ranges in a community of ecologically similar species. To show general predictions of
themodel on the role of interspecific competition in the coevolutionary range dynamics
of a group of species, we investigate the solutions of the model for two competing
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species over both a one-dimensional and a two-dimensional habitat. The typical values
given in Table 1 are used as the parameter values for both species, unless otherwise
stated. As in Sect. 4, in the one-dimensional studies of Sects. 5.1 and 5.2 , the habitat is
set asΩ = (−50 X, 50 X) with reflecting boundary conditions, the trait optimum Q is
considered to be linearly increasing overΩ , and the rest of the parameters are assumed
to be constant. In Sect. 5.3, a smaller habitat Ω = (−20 X, 50 X) is used to reduce
the computational cost of the simulations. The layout of the two-dimensional problem
presented in Sect. 5.4 is described there. The details of the numerical scheme and
discretization parameters used to compute the solutions are given in “Appendix B.”
The implementation of the numerical simulations in MATLAB R2021a is available
online; see the Code Availability section.

5.1 Range Limits Established by Interspecific Competition

It is shownbyCase andTaper (2000) that interspecific competition can effectively limit
the range of two competing species that would expand indefinitely in the absence of
competition. Here, we show that this result is not significantly affected by the evolution
of the intraspecific phenotypic variance, and similar predictions still hold when the
constant variance assumption is removed. For this, we consider two populations of
species that are initially distributed allopatrically and are both perfectly adapted to
the environment at their center. Similar to the initial values considered for the single
species of Sect. 4.1, we set ∂xq1(x, 0) = ∂xq2(x, 0) = 0.6 dxQ and v1(x, 0) =
v2(x, 0) = 1 Q2 for all x ∈ Ω .

Figure 7 shows the solutions of the model for T = 50T. Each species expands
its range to the edge of the habitat on the side where the species initially resides.
However, in the middle of the habitat where the two species meet, they prevent each
other’s progress. At the beginning, when the species are apart from each other, their
range dynamics is basically the same as the dynamics of a solitary species shown
in Sect. 4.1, that is, their trait mean gradually converges to the trait optimum as the
species adapt and advance to new areas. Therefore, when the species first meet at the
middle of the habitat, the individuals of either species that are near the interface of the
two populations have relatively close phenotypes. As a result, a strong interspecific
competition is initiated between these individuals, according to the competition kernel
specified by Eq. (23) in “Appendix A.4.” This competition decreases the fitness of the
populations at their interface. Hence, the density of the populations declines over their
interface, and this in turn intensifies the effect of asymmetric gene flow within each
population at the interface. By the same process as described for a single species in
Sect. 4.1, this asymmetric gene flow gradually flattens the trait mean curve of each
population over the interface, so that the curves depart from the trait optimum curve
in opposite directions. This can be seen through the highlighted curves in Fig. 7b.

The interaction described above between gene flow and interspecific competition
continues until the level of maladapted phenotypes in each species’ peripheral popu-
lations inside the interface becomes so extreme that it prevents local adaptation and
hence stops species’ range expansion through the interface. Consequently, a region of
sympatry is formed between the species at the middle of the habitat, over which the
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(a) (b)

(c) (d)

Fig. 7 Range dynamics of two species with the same parameters and allopatric initial distributions. Here,
m = 1, N = 2, and the rest of the model parameters for both species are the same and equal to the typical
values given in Table 1. In a–c, curves are shown at every 2T and arrows show the direction of evolution in
time. For the 1st species in a–c, curves are shown in orange, thick orange curves indicate the initial curves
at t = 0T, and a sample curve at t = 8T is highlighted in red. For the 2nd species in a–c, curves are
shown in green, thick green curves indicate the initial curves at t = 0T, and a sample curve at t = 8T is
highlighted in blue. In c, trait variance curves of the 2nd species are not shown since they are the same as
the curves of 1st species reflected about the origin. The solid black line in b and d shows the environmental
trait optimum Q. In d, final curves of the species’ trait mean at t = 50T are shown. The curves are made
transparent over the regions where population densities are approximately zero, as the values of trait mean
over these regions are not biologically meaningful (Color figure online)

species’ population densitymonotonically declines to zero. Figure 7a shows the forma-
tion of the associated range limits. Moreover, as shown in Fig. 7d, the species exhibit
significant character displacement in sympatry. These observations are consistent in
general with those given byCase andTaper (2000). Note that smaller values of the vari-
ance of individuals’ phenotypic utilization, Vi , restrict the interspecific competition to
individuals with closer phenotypes. As a result, the overall interspecific competition
becomes weaker and the region of sympatry becomes wider. The width of the region
of sympatry increases also with shallower environmental gradients, which result in
less extreme asymmetry in the gene flow. If the environmental gradient is zero, the
two species of Fig. 7 eventually become sympatric over the entire available habitat.

The highlighted curve in Fig. 7c shows that the phenotypic variance within each
species evolves to a bell-shaped curve. This is a consequence of asymmetric gene flow
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(a) (b)

Fig. 8 Competitive exclusion of an established species by the invasion of a faster growing species (m = 1,
N = 2). Here, R1 = 2T−1, R2 = 2.5T−1, and the rest of the parameters take their typical values given in
Table 1. Curves are shown at every 20T, and arrows show the direction of evolution in time after t = 20T.
For the 1st species, curves are shown in orange, thick orange curves are the initial curves at t = 0T, dashed
red curves are shown at t = 20T, and solid red curves are shown at the final time t = 500T. For the 2nd
species, curves are shown in green, thick green curves are the initial curves at t = 0T, dashed blue curves
are shown at t = 20T, and solid blue curves are shown at the final time t = 500T. The solid black line in b
shows the environmental trait optimum Q. Note that, in b, the curves of 1st species at t = 0T and t = 20T
are not clearly visible as they are very close to the trait optimum (Color figure online)

at both edges of the species’ range, as explained for the single species of Sect. 4.1.
Note that the large peaks in the curves shown in Fig. 7c occur where the population
has an infinitesimal density. Such regions are not practically considered within the
range of the species, and values of trait mean and variance over these regions are of
no biological meaning.

5.2 Competitive Exclusion

Generically, the region of sympatry originated by interspecific competition, as
described above in Sect. 5.1, does not remain stationarily centered between the two
species. The stationary region that is seen in Fig. 7a is simply due to the identical choice
of parameter values for both species. Any differences in the parameters that change
the competition balance between the two species cause the interface to constantly
move towards the competitively weaker species. If the imbalance is large enough, the
weaker species goes extinct after being ultimately pushed to the boundary of the habi-
tat. However, the dynamics of this competitive exclusion process is relatively slow.
For instance, if we repeat the computations of Fig. 7, but this time with R1 = 3T−1

and R2 = 2T−1, we see that a region of sympatry is formed quickly in the middle
of the habitat within 10T, but it then moves rather slowly towards the right bound-
ary. The second species reaches the right boundary and begins to decline in density
approximately at t = 270T. It practically becomes extinct at about t = 460T. This
evolutionary dynamics can indeed be much slower if the difference between R1 and
R2 is made smaller.

A similar, but biologically more interesting competitive exclusion occurs when an
invasive species is introduced to a habitat that is already occupied by a well-adapted
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species. To see this, we assume that the final population of the solitary species of
Sect. 4.1 at t = 50T is occupying the habitat here at t = 0T, labeled as the 1st
species. Moreover, we assume a faster growing 2nd species with R2 = 2.5T−1 is
introduced at t = 0T at the center of the habitat, with the same initial conditions used
for the species of Sect. 4.1. With these initial populations, we compute the solutions
over the time horizon of T = 500T. The results are shown in Fig. 8. It can be seen that,
after a transient initial reduction in its density, at about t = 20T the introduced species
starts growing constantly and expanding its range. The established species, which is
significantly weaker than the invasive species due to its smaller maximum growth rate,
declines constantly in density over the expanding range of the invasive species. When
this species’ central population at the origin becomes extinct, two separate regions of
sympatry are formed on opposite sides of the habitat. From this point on, these regions
move in opposite directions towards the boundary of the habitat, and the introduced
species eventually establishes itself over the entire habitat by fully excluding the
preexisting species. This eco-evolutionary process, however, occurs very slowly.

5.3 Stable Marginal Coexistence

If the two species of Sect. 5.1 differ from each other, but the difference between them
is rather minor, then a stable equilibrium can exist in which the weaker species is not
entirely excluded from the habitat, but it appears only over a limited extent adjacent
to the boundary. To see this, we consider two populations of species which differ only
in their maximum growth rate, with R1 = 2.1T−1 and R2 = 2T−1. We initialize a
simulation with these two populations being allopatrically distributed and perfectly
adapted to the environment everywhere, that is, ∂xq1(x, 0) = ∂xq2(x, 0) = dxQ.
Moreover, we set v1(x, 0) = v2(x, 0) = 1 Q2 for all x ∈ Ω . Figure 9 shows the
solutions of the model with these initial populations over a long time horizon of
T = 5000T.

It can be seen in Fig. 9 that an evolutionary stable marginal region of sympatry is
eventually formed at the vicinity of the right boundary. This is becausewhen theweaker
species is ultimately pushed to the boundary, the level of maladaptive gene flow to its
inner peripheral population declines, as there is no inward flux of phenotypes through
the boundary. Moreover, the overall reduction in the species’ population density at the
boundary also reduces the effect of intraspecific competitionwithin the population.The
peripheral population of the other species, however, does not experience a significant
change in the level of gene flow it receives from the species’ core areas. Since the
interaction between the two species is mainly through their peripheral individuals, the
relative advantage that the weaker species gains from the reduction in the amount of
maladapted phenotypes and intraspecific competition can compensate for the species’
minor weakness in interspecific competition. As a result, the two species reach a
steady state in which the weaker species survives marginally. Convergence to this
equilibrium, however, is very slow. Note that this stable range equilibrium also exists
similarly under the assumption of constant phenotypic variance, as discussed by Case
and Taper (2000).
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(a) (b)

Fig. 9 Formation of an evolutionary stable marginal coexistence of two species at the vicinity of habitat’s
boundary (m = 1, N = 2). Here, R1 = 2.1T−1, R2 = 2T−1, and the rest of the parameters take their
typical values given in Table 1. In a, curves are shown at every 200T and arrows show the direction of
evolution in time after the region of sympatry formed between the species starts moving towards the right
boundary. For the 1st species, curves are shown in orange, the thick orange curve indicates the initial curve
at t = 0T, and the final curve at t = 5000T is highlighted in red. For the 2nd species, curves are shown
in green, the thick green curve indicates the initial curve at t = 0T, and the final curve at t = 5000T is
highlighted in blue. In b, final curves of the species’ trait mean at t = 5000T are shown in red and blue,
and the solid black line shows the environmental trait optimum Q. The curves in b are made transparent
over the regions where population densities are approximately zero, as the values of trait mean over these
regions are not biologically meaningful (Color figure online)

The evolutionary dynamics described above at the vicinity of the habitat’s boundary
can be affected by the boundary conditions of the problem. The reflective boundary
condition we considered in the simulation above does not impose any reduction on
the population density of the species when they reach the boundary. An absorbing
boundary condition, in contrast, allows for reduction of the population densities. As
a result, it might be imagined that under an absorbing boundary condition the weaker
species of Fig. 9 will fail to survive, even marginally. Although this is indeed a valid
possibility, it does not imply that the stable marginal coexistence observed in Fig. 9 is
simply an artifact of the reflecting boundary condition. In fact, depending on the overall
effect of the different eco-evolutionary factors involved in the range dynamics near
the boundary, the weaker species may still achieve sufficient fitness that compensates
for its population reduction through the boundary as well. To see these possibilities,
below we consider a, perhaps more realistic, situation in which the boundary of the
habitat is set by a physical barrier.

We assume that the right boundary of the habitat is set by a physical barrier at
x = 45X, which we model by an abrupt change in the gradient of the optimal trait
from the typical value of 0.2Q/X to the extremevalue of 10Q/X. The results of Sect. 4.2
predict no chance of survival for the species over this region of extreme environmental
gradient. We repeat the computations of Fig. 9 with the same species, and the same
reflecting boundary conditions. However, we note that here the reflecting boundary
condition has no impact on the range dynamics of species at the vicinity of the barrier,
as the population density of the species will be infinitesimal at the boundary. The
simulation results, over a time horizon of T = 5000T, are shown in the upper panel
of Fig. 10.
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(a) (b)

(c) (d)

Fig. 10 Range dynamics of two species at the vicinity of a geographic region with extreme environmental
gradient (m = 1, N = 2). For the results shown in both panels, R1 = 2.1T−1 and R2 = 2T−1. The results
shown in the upper panel are obtained with D1 = D2 = 1X2/T, whereas the results shown in the lower
panel are obtained with D1 = D2 = 5X2/T. The rest of the parameters take their typical values given in
Table 1 for the results shown in both panels. The same description as given in Fig. 9 holds here for the
curves and arrows, with the only difference being that here the curves in a and c are shown at every 100T
(Color figure online)

Unlike the results shown in Fig. 9, we see that no marginal region of coexis-
tence is formed at the vicinity of the barrier in Fig. 10a. That is, the population
loss that the weaker species suffers from in this case—due to the diffusion of its
peripheral individuals to the region of extreme environmental gradient, where they
cannot survive—eventually brings the species to extinction. However, to show that a
stable marginal region of sympatry can still be formed in the present habitat layout,
we repeat the simulations described above, but this time with larger species dispersal
of D1 = D2 = 5X2/T. This increases the effect of gene flow in the overall balance
of eco-evolutionary factors, so that the advantage that the weaker species gains from
the reduction in the level of maladapted phenotypes at the vicinity of the barrier can
compensate for both its population loss through the barrier and its minor weakness in
interspecific competition. The resulting evolutionarily stable region of coexistence is
shown in the lower panel of Fig. 10.
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5.4 Effect of Multiple Competition Factors

Competing species in nature may differ in many ecological and evolutionary param-
eters, which may also vary both over space and time. The overall effect of these
parameter differences dynamically changes the competition balance between the
species, and hence the chance of survival, invasion success, and spread of a species
within a community. To demonstrate this—to some extent—we investigate a more
complicated, but still intuitively understandable example of the range dynamics of
two interacting species in a two-dimensional habitat. Specifically, we assume that the
habitat is already occupied by a well-adapted species with a spatially heterogeneous
carrying capacity. We then introduce a new species into the habitat which has a spa-
tially homogeneous carrying capacity and consists of less specialized individuals, as
compared with the established species. We investigate the establishment success or
failure of the new species and whether or not it can be affected by changes in the
species’ dispersal.

We consider the habitat Ω = (−50X, 50X) × (−50X, 50X) with an optimal cline
given as Q(x) = 20 + 0.2x1. That is, the trait optimum is assumed to be linearly
growing with a slope of dxQ = 0.2Q/X along the x1-axis, whereas it is assumed to be
constant along the x2-axis. Boundary conditions are set to be reflecting at x1 = −50
and x1 = 50, and periodic across x2 = −50 and x2 = 50, as described in Remark 1.
The parameter values that are not specified below are set to be constant and equal to
the typical values given in Table 1.

The preexisting species, which is labeled as 1st species hereafter, is assumed to
have a spatially heterogeneous carrying capacity K1 that varies over Ω within a range
of values from 0.65 to 1N/X2. The spatial pattern of K1 is approximately the same as
the spatial pattern of the 1st species’s initial population density, shown at t = 0T in
Fig. 11. This is because, as described below, the initial population of this species is
almost at a fully adapted steady state and occupies the entire habitat nearly to its full
capacity. The introduced species, which is labeled as 2nd species hereafter, is assumed
to have a spatially homogeneous carrying capacity of K2 = 1N/X2 over the entire
geographic space. Moreover, this species is composed of individuals which are more
generalist than the individuals of the 1st species, with V2 = 6Q2.

To initialize the population of the 1st species that preoccupies the habitat, we first
consider only a solitary species with the same parameters as specified above for the
1st species, and perform the following preliminary computations. We begin with a
local population of this solitary species located at the center of the habitat, and let it
evolve for a sufficiently long period of T = 100T, so that the species has enough
time to fully adapt to the environment and spread throughout the habitat. Since the
typical environmental gradient considered here is not steep, the results of Sect. 4.2
imply that the species eventually occupies the entire geographic space almost to its full
capacity. Therefore, at the end of the computations, the spatial pattern of the species’
population density closely follows the spatial pattern of the carrying capacity K1, and
the species’ trait mean converges approximately to Q. We pick the final solutions
obtained at t = 100T, and use them as the initial conditions for the preoccupying
species of current study at t = 0T.
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Fig. 11 Effect of multiple competition factors on the establishment success of a newly introduced species in
a two-dimensional habitat that is preoccupied by another species, (m = 2, N = 2). Population density of the
preoccupying species is shown in orange, whereas population density of the introduced species is shown in
green. Carrying capacity K1 of the environment for the preoccupying species (1st species) is heterogeneous
and varies from 0.65 to 1N/X2, whereas for the introduced species (2nd spices) the carrying capacity is
homogeneous and equal to K2 = 1N/X2. For the 1st species, V1 = 4Q2 and D1 = I2 X

2/T, where I2
denotes the 2 × 2 identity matrix. For the 2nd species, V2 = 6Q2 and D2 takes different values for the
results shown in the upper and lower panels, as specified below. The rest of the parameters for both species
take their typical values given in Table 1. Upper panel: with D2 = I2 X

2/T, the newly introduced species
succeeds in establishing itself over the regions where it is favored by the overall effect of the competition
factors. Lower panel: with D2 = 6I2 X2/T, the newly introduced species fails to establish itself in the
habitat in 200T. Note the difference in the scales of the color bars in the upper and lower panels. Population
density of the 1st species is not shown in the lower panel as its initial profile is not significantly affected
during the evolution of the 2nd species over the simulation time horizon (Color figure online)

We assume that the 2nd species is introduced at t = 0T over a fairly wide region
at the center of the habitat, but with a relatively low density, as shown in Fig. 11. Note
that this initial distribution is the same in both upper and lower panels of Fig. 11, but
it is more visible in the lower panel due to the scale of the color bar. Finally, we set
q2((0, 0), 0) = Q((0, 0)), ∂xq2(x, 0) = 0.6 dxQ, and v2(x, 0) = 1.

Since K2 ≥ K1 everywhere in Ω , the introduced species would be expected to
successfully establish itself and exclude the preoccupying species from most areas
of the habitat, if the two species were composed of equally specialized individuals.
However—since we assume no limit on the amount of resources that can be utilized by
individuals with any phenotypic value—the first species which is composed of more
specialized individuals has a competition advantage over the second species. That is,
the introduced species would have no chance of survival and would quickly become
extinct if it did not have a greater carrying capacity. Therefore, whether or not the
introduced species will eventually succeed in establishing itself over a region depends
on the balance between these two opposite competition factors on that region, as well
as on the interacting dynamic effects of gene flow.To see this, we compute the solutions
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for a time horizon of T = 200T. The computed population densities are shown in
the upper panel of Fig. 11 at every 50T. It can be seen that the introduced species
successfully establishes itself by gradually excluding the preestablished species from
the areas where the difference between the carrying capacities is sufficiently large to
compensate for the utilization disadvantage of the introduced species.

The establishment success of the introduced species can also be affected by other
factors, besides the competition factors. In particular, it can be affected by the level of
maladaptation created by gene flow. To see this, first note that the introduced species
cannot quickly adapt itself to the regions over which K1 is not sufficiently small and
hence the 1st species dominates. These regions are relatively close to each other, due
to the special pattern of K1 considered here. Now, assume that the individuals of the
introduced species migrate over significantly longer distances, so that phenotypes can
be effectively shared between the regions populated by poorly adapted individuals and
their adjacent regions populated by better adapted individuals. As a result, the mean
trait of the introduced species becomes relatively uniform over the range of the species
and deviates largely from the optimum. Depending on the value of D2, this process can
significantly decrease the establishment speed of the 2nd species, or can even totally
prevent it from happening. For instance, as shown in the lower panel of Fig. 11, the
introduced species fails to establish itself in 200T if we set D2 = 6I2 X2/T, where I2
denotes the 2 × 2 identity matrix.

6 Discussion

The present study is part of a larger effort to explain why species can form stable
range boundaries in the absence of environmental discontinuities. We focused on two
important factors, competition and maladaptation to an environmental gradient, that
are commonly thought as possible causes of species’s range limits. Our specific goal
was to reconcile the conclusions of Barton (2001), who modeled a single species
in an environmental gradient with variable genetic variance, and those of Case and
Taper (2000), who modeled two competing species in an environmental gradient with
constant genetic variance.

6.1 Range Dynamics in the Presence of Competition and an Environmental
Gradient

Toward the goal of our study, we developed a model that resembles the competition
model of Case and Taper (2000), but with variable (genetic) trait variance for each
species. We provided a rigorous mathematical derivation of the model, as well as a
detailed discussion on its parameters and their biologically reasonable ranges of values.
We computationally studied the solutions of the model to investigate its predictions
in a number of evolutionary regimes, indicating the effects of gene flow, environ-
mental gradients, interspecific competitions, climate change, and species dispersal
on species’ eco-evolutionary range dynamics. Our simulations show behavior that
contrasts strongly with that of the seminal model of Kirkpatrick and Barton (1997),
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of which the models developed by Case and Taper (2000) and Barton (2001) are
extensions—most strikingly, we do not find range pinning of a single species. Instead,
we find behavior broadly consistent with that of Case and Taper (2000), indicating
that the conclusions in that study are robust to the removal of constraints on genetic
variance.

6.2 Comparison with Single-Species Models

To some extent, the single-species reduction of our model showed consistent results
with the work of Barton (2001), that the species’ phenotypic variance increases pro-
portionally as the environmental gradient increases, so that the species’ adaptation
and range expansion is still possible even at steep environmental clines. However,
we showed that the species’ expansion speed reduces as the environmental gradient
increases.Moreover, the species’ ability to expand its range does not necessarily imply
that the species will eventually spread all over the habitat in full capacity. Stabilizing
selection tends to decrease genetic variance, both directly through the term −Sv2 in
(14), and indirectly by imposing a genetic load on the fitness of the species. This
genetic load appears as the term −S

2v in the fitness function given in (12). As a result,
the species suffers from substantial loss of fitness when v takes large values along
steep optimal clines, and hence its equilibrium population density lies significantly
below its ecological carrying capacity. At extreme gradients, as we showed, the species
fails to survive and becomes extinct. For linear clines, this extinction was estimated
to occur at any gradient beyond |dxQ|max = √

(2R2/SD) − U/2D.
In comparison with the equations of Barton’s model (Barton 2001, Eq. 16), our

Eqs. (12)–(14) include additional nonlinear terms that model the effect of intraspecific
competition. These nonlinear terms affect the shape of the wave amplitude and speed
curves discussed in Sect. 4.2. However, the main reason why our results—showing
species extinction at steep but finite environmental gradients, even with mutational
forcing—differ from those of Barton (2001) is most likely due to the approximations
made in the analysis performed by Barton. To see this, let A and B be, respectively, the
scaled selection strength and the scaled optimum gradient defined by Barton (2001).
The approximate analysis of Barton based on a simplified version of the equations
(Barton 2001, Eq. 10) led to the conclusion that the genetic load generated by inflation
of the genetic variance reduces the equilibrium population density at a rate approxi-
mately proportional to exp(−B/

√
2), while the species is still allowed to occupy an

indefinitely wide range. However, if we perform our equilibrium analysis of Sect. 4.2
on the original equations given by Barton (2001, Eq. 16) with logistic density depen-
dent fitness, we obtain a critical value, Bmax = 2−A2/2, of the scaled environmental
gradient above which the species fails to survive. This would then be consistent with
our results.

6.3 Comparison with Two-Species Models

Comparison between the results presented in Sect. 5.1 and those presented byCase and
Taper (2000) shows that the evolution of trait variance does not substantially change
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the dynamics of the range limit formed at the interface of two competing species. The
interaction between interspecific competition andgeneflowcan still effectively prevent
species’ range expansion when they meet each other. The species exhibit character
displacement and coexist in sympatry over a region formed between them. Although
the results show that in practice this region of sympatry does not remain stationary in
time and moves towards the competitively weaker species—and can eventually result
in exclusion of this species—the dynamics of this movement is expected to be very
slow, so that the competitively formed range limits may appear to be stationary in
experimental measurements.

6.4 Spatial Profile of Trait Variance

The spatial profile of trait variance, as it evolves in time according to (1)–(3), is con-
sistent with experimental measurements performed by Takahashi et al. (2016) on two
similar species of damselflies along a latitudinal temperature gradient. Thesemeasure-
ments show that genetic variation is relatively constant and high within well-adapted
central populations, whereas it drastically declines at species’ range margins where
significant phenotype-environment mismatches are observed. However, the results
presented here do not necessarily support the conclusion made by Takahashi et al.
(2016), which suggests that the lack of genetic variation at species’ range margin is
responsible for preventing adaptation and range expansion. The bell-shaped profile of
trait variance shown in Sect. 4 is quickly formed as the initial population grows and
adapts to the environment, so that its trait mean converges to the trait optimum at the
population center. The sharp decline in the trait variance at the periphery of the species’
range ismainly due to the flattened curve of trait mean over these regions, which in turn
is caused by asymmetric gene flow from the core. This general profile of trait variance
ismaintained as the species expands it range and eventually occupies the entire habitat,
even with steep environmental gradients. Therefore, based on the predictions of our
model, the significant decline in genetic variation at the range margin, compared with
the core, does not necessarily identify it as a main factor preventing range expansion.
Note that the results presented in Sect. 5.1 show that intraspecific trait variance also
declines significantly at the interface between two competing species, where species’
range expansion is indeed prevented but mainly as a result of interaction between gene
flow and interspecific competition.

6.5 Numerical andMathematical Remarks

It is worth commenting on features of our model that make it delicate to simulate
numerically and challenging to investigate mathematically. First, we note that the
mathematical equations of the model and their derivation assume that ni (x, t) �= 0
for all (x, t) ∈ Ω × [0, T ]; otherwise the terms ∂x log ni (x, t) in (2) and (3) will
present singularities. Therefore, at least an infinitesimal population density must be
considered for all initial populations on the entire domain Ω . This consideration for
the initial population, however, does not necessarily prevent potential numerical sin-
gularities that may arise during the evolution of the species when population density
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of a species becomes extremely small at some points. Using finer spatial discretization
meshes and smaller time steps for the numerical scheme, as well as choosing better
adapted initial populations and smaller geographic spaces, can resolve such numerical
singularity problems in many simulations. However, specifically designed numerical
treatment will be required for certain problems, for instance, when a species under-
goes an extinction regime over a long simulation time horizon. None of the simulations
results presented in this paper, however, required such a specific numerical treatment.

Next, we note that the basic eco-evolutionary behaviors demonstrated in this paper
do not necessarily provide a comprehensive picture of the dynamics of the model. It
would be fruitful to carry out a rigorousmathematical analysis of themodel to establish
existence or nonexistence of other evolutionary regimes. Investigating whether or
not there exist sets of biologically plausible parameter values that will still result
in the formation of an evolutionarily stable limited range for a solitary species is of
particular interest.As illustrated in the example of Sect. 5.4, formore realistic problems
which involve multiple species of different biological and genetic characteristics in
a two-dimensional geographic space, the community range dynamics predicted by
the model can be quite complicated. Although rigorous mathematical analysis of the
model may not be tractable for such problems, numerically computed solutions of
the model under different conditions can result in valuable insights. Exploring the
impact of environmental heterogeneity and patchiness on the geographic structure of
a community of species can be an example of a potentially interesting computational
study.

Finally, we note that, for a single species, the numerical singularity problem
described above can be technically resolved by restructuring the model and rep-
resenting it as a type of PDE system with moving boundary. In this new model
structure, Eqs. (1)–(3) will be defined on the evolving range of species given as
Ωt := {x ∈ Γ : n(x, t) ≥ 0}, t ∈ [0, T ], where Γ denotes the available geographic
space. Note that this implies n = 0 in Γ \ Ωt . Appropriate boundary conditions will
be required on the moving boundary ∂Ωt for variables q and v. The equation of the
evolution of the moving boundary can also be derived using commonly used velocity
conditions. The resulting system of singular parabolic differential equations would,
like the original system, be a rewarding problem to be analyzed mathematically.

6.6 Future Research Directions

There is a large body of empirical work involving transplants beyond range boundaries
that investigate species’ (mal)adaptation at rangemargins (Angert et al. 2020). The key
question, though, is what causes the range boundaries to exist where they do. A test of
the “genetic swamping” hypothesis—that gene flow from the range’s center inhibits
adaptation at the margins—requires estimates of gene flow (and hence dispersal) as
well as of fitness and of the optimal phenotype as a function of space. Thus, although
many transplant experiments have added to our understanding of local adaptation or
failure to adapt at range margins, few experiments have accounted for all the factors
necessary to test the genetic swamping hypothesis.
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Theoretical models of evolutionary range dynamics ultimately must help explain
empirical phenomena. To identify the causes of observed range dynamics for a given
species, practitioners must choose the most appropriate model from a potentially large
family ofmodels. A case of particular interest is range pinning: theKirkpatrick–Barton
family of models, including Case and Taper (2000) and Barton (2001), can be used to
decide whether genetic swamping has set range limits for a population in nature. Given
the paucity of real-life cases where this has been shown to occur (Angert et al. 2020;
Colautti and Lau 2015; Bridle et al. 2009; Benning et al. 2019; Willi and Van Buskirk
2019; Micheletti and Storfer 2020; Paul et al. 2011), it is reasonable to be conservative
when concluding that genetic swamping has set the range limits for a species.

Since stochasticity often promotes range pinning (Bridle et al. 2010; Polechová
and Barton 2015), it is therefore reasonable to use deterministic models when testing
for genetic swamping as the cause of a range limit. However, it would be misguided
to only consider models that added a single extra feature to the KB model, since
multiple additional factors surely coexist in many, if not all, natural systems. This
justifies the construction and careful study of models incorporating multiple extra
features. We have done so in the present work by incorporating both competition
and evolving trait variance in our model. We believe that further studies of this type,
incorporating other demographic, genetic, environmental, or ecological factors that
may influence range dynamics, would be well justified. Such studies should not only
facilitate the application of these models to testing the genetic swamping hypothesis,
but also inform the development of practical models that help predict the outcomes of
specific invasions and the effectiveness of possible control measures.

7 Conclusion

It is intuitively plausible that, as our results suggest, arbitrarily high levels of genetic
variance will not always promote range expansion. However, the absence of range
pinning in our single-species model is noteworthy, since it harmonizes with the con-
clusions of both Barton (2001) and Case and Taper (2000). It suggests that, when
additive genetic variance is not held constant by fiat, the phenomenon of range pin-
ning via “genetic swamping” identified by Kirkpatrick and Barton (1997) will not
occur. However, viewing this finding as conclusive would ignore the growing body of
theoretical work that has built on the results of Kirkpatrick and Barton (1997), iden-
tifying conditions that promote or inhibit range pinning. Most notably, genetic drift
and other stochastic effects are absent from our model, as they are from the works of
Kirkpatrick and Barton (1997), Case and Taper (2000), and Barton (2001). Studies
with individual-based models, which implicitly feature not only stochasticity but also
variable trait variance, suggest that a system with these factors in combination may
exhibit range pinning through genetic swamping. However, such models are difficult
to analyze, and their simulation may involve hidden factors such as a discrete spatial
grid that would promote range pinning in the numerical results but not in the under-
lying model. Mathematical analysis of stochastic differential equations may provide
a middle ground for understanding the effects of stochasticity in an environmental
gradient. As with the present study and other theoretical work, such analyses should
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help guide empirical studies, so far quite rare (Micheletti and Storfer 2020; Angert
et al. 2020; Colautti and Lau 2015; Benning et al. 2019), that will be the ultimate test
of the hypothesis that genetic swamping can induce range pinning in the absence of
competition.
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Appendix A: Model Derivation

To derive the equations of the model given by (1)–(7), we first formulate the intrinsic
growth rate of the individuals within each species, which determines the local dynam-
ics of the evolution of the species. For this, at position x ∈ Ω and time t ∈ [0, T ],
let φi (x, t, p) denote the relative frequency of a quantitative phenotypic trait with
phenotype value p ∈ R within the i th species. Moreover, let αi j (p, p′) denote the
competition kernel that captures the per capita effect of phenotype p′ in the j th species
on the frequency of phenotype p in the i th species. The exact definition of this com-
petition kernel is given in “Competition Kernels” section of “Appendix A” below.
Finally, let gi (x, t, p) denote the intrinsic growth rate of the population of individuals
with phenotype p within the i th species.

A.1 Intrinsic Growth Rates

For a community of N competing species, we define the intrinsic growth rate of each
species as (Case and Taper 2000, Eq. (2)),

gi (x, t, p) := Ri (x)

⎛

⎝1 − 1

Ki (x)

N∑

j=1

n j (x, t)
∫

R

αi j (p, p
′)φ j (x, t, p

′)dp′
⎞

⎠

− S

2
(p − Q(x))2, i = 1, . . . ,N. (17)

The first term in (17) is a Lotka–Volterra model of competing species in which the con-
volution term with j = i expresses the effect of intraspecific phenotypic competition
on the frequency of phenotype p, whereas the convolution terms with j �= i account
for the effect of interspecific competition from the phenotypes in the other species.
The second term in (17) incorporates the effect of directional and stabilizing selection
on individuals with phenotype p. A local population of a species at position x that has
a phenotypic trait value different from the environmental optimal value Q(x) can only
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reach an equilibrium density that is lower than its carrying capacity. This penalizing
effect of the phenotypic selection is made stronger by choosing larger values for S.

A.2 Competition Kernels

As proposed by Case and Taper (2000, Eq. (3)), we obtain the competition kernels
αi j in (17) using the MacArthur-Levins overlap formula between resource utilization
curves of each species (Macarthur and Levins 1967), along with the total resource con-
sumption law given by Roughgarden (1979, Eq. (24.50)). Suppose the environmental
resources vary continuously along a resource axis denoted by variable r . Moreover,
suppose that individuals with phenotype p within each species possesses a resource
utilization curve of the form

ξi,p(r) := Ψ eκ pψi,p(r), i = 1, . . . ,N,

where ψi,p(r) is a probability density function, which gives the probability density
that the individuals obtain a unit of resource from point r . The term Ψ eκ p gives the
total amount of resource consumed by an individual with phenotype p. This power
law is proposed by Roughgarden (1979, Eq. (24.50)) based on the assumption that
energy consumption by an individual is proportional to its weight. This interpretation,
however, does not necessarily hold for the general trait-based model presented in
this paper, and this specific form of resource consumption form is mainly adopted
for the simplicity of derivations and for providing the model with the flexibility of
incorporating asymmetric intraspecific competitions with κ �= 0.

The resource utilization functions ξi,p(r) are used to obtain the competition kernels
αi j by the following overlap formula (Roughgarden 1979, Eq. (24.5))

αi j (p, p
′) :=

∫
R

ξi,p(r)ξ j,p′(r)dr
∫
R

ξ2i,p(r)dr
.

Calculation of αi j (p, p′) based on this formula involves having precise information
about resource values. However, it is convenient to assume that the resource axis can
be identified by phenotype axis, as proposed by Roughgarden (1979, Eq. (24.51)).
For this, let rp denote the point on the r -axis from which individuals of phenotype p
obtain their average amount of resources.We assume that rp does not depend onwhich
species the individuals belong to, that is, rp = ∫

R
rψi,p(r)dr for all i = 1, . . . ,N.

We further assume that there is a smooth one-to-one map I : p �→ rp, which can
be used to identify the r -axis with the p-axis, that is, for every r ∈ R there exist a
unique phenotype p̃ ∈ R such that r = I ( p̃) ≡ p̃. Therefore, the resource utilization
functions and competition kernels can be written only based on trait values, as

ξi,p( p̃) := Ψ eκ pψi,p( p̃), i = 1, . . . ,N, (18)

αi j (p, p
′) :=

∫
R

ξi,p( p̃)ξ j,p′( p̃)d p̃
∫
R

ξ2i,p( p̃)d p̃
, i = 1, . . . ,N, j = 1, . . . ,N. (19)

123



   37 Page 40 of 52 F. Shirani, J. R. Miller

Note that, by the definition of I we have
∫
R
p̃ψi,p( p̃)d p̃ = p. We refer to ξi,p in

(18) as phenotype utilization function of individuals with phenotype p within the i th
species.

The identification stated above can represent the empirical relationship between
functional response traits and environments. In addition to simplifying the mathemat-
ical derivations, this identification allows estimation of the parameters of the utilization
functions using trait-based approaches to niche quantification (Violle and Jiang 2009;
Ackerly and Cornwell 2007). This was further discussed in Sect. 3.

A.3 Changes Due toMutation

Let ν(δ p) denote the probability density that by mutation a phenotype p changes to a
phenotype p + δ p. We use the equation provided by Kimura (1965), but at the level
of phenotypic effects, to approximately model the rate of mutational changes in the
frequency of phenotypes as

∂
(M)
t φi (x, t, p) :=−ηφi (x, t, p)+η

∫

R

ν(p − p′)φi (x, t, p
′)dp′, i=1, . . . ,N,

(20)

where η ≥ 0 is the mutation rate per capita per generation. The first term in (20)
gives the reduction rate in the frequency of phenotype p within the i th species due
to mutation to other phenotypic values. The second term gives the growth rate in the
frequency of phenotype p due to mutations to p from other phenotypic values within
the i th species.

A.4 Model Assumptions

As stated in Sect. 2, the following major assumptions are made on the populations’
dispersal and reproduction, and on the elements of the intrinsic growth rates and
competition kernels described above. These assumptions are used in “Derivation of
Equations” section of “Appendix A” to derive the equations of the model based on
(17).

(i) Each species disperses in the habitat by diffusion.
(ii) Nonlinear environmental selection for the optimal phenotype Q(x) is stabilizing

for all x ∈ Ω .
(iii) Frequency of trait values follows a normal distribution for all x ∈ Ω and t ∈

[0, T ], that is,

φi (x, t, p) := 1√
2πvi (x, t)

exp

(
− (p − qi (x, t))2

2vi (x, t)

)
, i = 1, . . . ,N. (21)

(iv) Within each species, the reproduction rate of individuals with phenotype p
depends on the population density of individuals with the same phenotype p.
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(v) Phenotype utilization distribution ψi,p in (18) is normal, that is,

ψi,p( p̃) = 1√
2πVi

exp

(
− ( p̃ − p)2

2Vi

)
, i = 1, . . . ,N. (22)

Therefore, competition kernels given by (19) can be calculated as

αi j (p, p
′) = Λi j exp(κ

2V̄i j ) exp

(
− (p − p′ + 2κV̄i j )

2

4V̄i j

)
,

i = 1, . . . ,N, j = 1, . . . ,N, (23)

where Λi j :=
√
Vi/V̄i j with V̄i j := 1

2 (Vi + V j ), as in (7).
(vi) The mutation kernel ν in (20) is the probability density function of a probabil-

ity distribution with constant zero mean and constant variance Vm. That is, in
particular, ν is independent of population density, trait mean, or baseline trait
variance.

Remark 6 (Symmetric competition kernel) The MacArthur-Levins overlap formula
(19) gives asymmetric competition kernels (23), wherein αi j (p, p′) �= α j i (p, p′)
when Vi �= V j or κ �= 0. A symmetric alternative to (19) is proposed in the literature
(Pianka 1973), which can be written as

αi j (p, p
′) :=

∫
R

ξi,p( p̃)ξ j,p′( p̃)d p̃
(∫

R
ξ2i,p( p̃)d p̃

∫
R

ξ2i,p′( p̃)d p̃
) 1

2

, i = 1, . . . ,N, j = 1, . . . ,N.

With the normal density function ψi,p given in (22), this symmetric overlap formula
yields

αi j (p, p
′) = Λi j exp

(
− (p − p′)2

4V̄i j

)
, i = 1, . . . ,N, j = 1, . . . ,N, (24)

where Λi j :=
√
V̊i j/V̄i j with V̊i j := √

ViV j and V̄i j := 1
2 (Vi +V j ). In “Derivation

of Equations” section of “Appendix A,” however, the asymmetric kernels (23) are
used to derive the equations of the model given in (7). Note that, (23) can be easily
transformed to (24) by setting κ = 0 and replacing Vi with V̊i j . ��

A.5 Derivation of Equations

The derivation of Eqs. (1)–(7) begins with the following equation

ni (x, t + τ)φi (x, t + τ, p) − ni (x, t)φi (x, t, p)

= τ
[
div(Di (x)∂x (ni (x, t)φi (x, t, p))) + gi (x, t, p)ni (x, t)φi (x, t, p)

+ ni (x, t)∂
(M)
t φi (x, t, p)

]
, i = 1, . . . ,N, (25)

123



   37 Page 42 of 52 F. Shirani, J. R. Miller

wherein, within each species the variation in the population density of individuals
with phenotype p over a small time interval τ → 0 is assumed to result from the
contributions of three factors, namely, the diffusive migration of individuals to and
from neighboring locations, the intrinsic growth of the population, and the mutational
changes in the relative frequency of p.

Integrating both sides of (25) with respect to p over R, we obtain

ni (x, t + τ) − ni (x, t) = τ
[
div(Di (x)∂x (ni (x, t)))

+Gi (x, u(x, t))ni (x, t)
]
, (26)

where

Gi (x, u(x, t)) :=
∫

R

gi (x, t, p)φi (x, t, p)dp (27)

denotes the mean value of the intrinsic growth rate of the population of individuals
with phenotype p within the i th species. Note that in writing (27) we have used (20)
to obtain

∫
R

∂
(M)
t φi (x, t, p)dp = 0. Moreover, we have implicitly presumed that the

mean value of gi (x, t, p) can be written in terms of x and the variables of the model,
u. This is indeed true by the calculations that follow below. In addition, note that (1)
is obtained immediately by dividing both sides of (26) by τ and taking the limit as
τ → 0, provided Gi (x, u) is shown to be given by (4).

Next, to derive (2), we multiply both sides of (25) by p and integrate the result
with respect to p over R. Note that the zero-mean assumption (vi) on the mutation
distribution, along with (20), gives

∫
R
p∂(M)

t φi (x, t, p)dp = 0. Therefore, we obtain

ni (x, t + τ)qi (x, t + τ) − ni (x, t)qi (x, t)

= τ

[
div(Di (x)∂x (ni (x, t)qi (x, t))) + ni (x, t)

∫

R

pgi (x, t, p)φi (x, t, p)dp

]
,

(28)

which further implies, after dividing by τ and taking the limit as τ → 0, that

∂t (ni (x, t)qi (x, t)) = div(Di (x)∂x (ni (x, t)qi (x, t)))

+ ni (x, t)
∫

R

pgi (x, t, p)φi (x, t, p)dp. (29)

Now, using the chain rule on the left hand side of the above equation and substituting
(1) into the result, we obtain

∂t qi (x, t) = 1

ni (x, t)

[
div(Di (x)∂x (ni (x, t)qi (x, t)))

− qi (x, t)
(
div(Di (x)∂xni (x, t)) + Gi (x, u(x, t))ni (x, t)

)]

+
∫

R

pgi (x, t, p)φi (x, t, p)dp.
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For the first term within the brackets we can write

div(Di (x)∂x (ni (x, t)qi (x, t)))

= div(qi (x, t)Di (x)∂xni (x, t)) + div(ni (x, t)Di (x)∂xqi (x, t))

= qi (x, t) div(Di (x)∂xni (x, t)) + 2 (∂xni (x, t),Di (x)∂xqi (x, t))Rm

+ ni (x, t) div(Di (x)∂xqi (x, t)).

Therefore, it follows that

∂t qi (x, t) = div(Di (x)∂xqi (x, t)) + 2

(
∂xni (x, t)

ni (x, t)
,Di (x)∂xqi (x, t)

)

Rm

+Hi (x, u(x, t)),

where

Hi (x, u(x, t)) :=
∫

R

pgi (x, t, p)φi (x, t, p)dp − Gi (x, u(x, t))qi (x, t). (30)

This gives (2), provided we show Hi (x, u) can be given by (5).
Finally, to derive (3), we multiply both sides of (25) by (p − qi (x, t + τ))2 and

integrate the result with respect to p over R. For the mutation term in (25), it follows
from (20) and assumption (vi) that

∫
R
(p − qi (x, t + τ))2∂

(M)
t φi (x, t, p)dp = U,

where U := ηVm. Therefore, we obtain

ni (x, t + τ)vi (x, t + τ)

=
∫

R

(p − qi (x, t + τ))2
[
τ div(Di (x)∂x (ni (x, t)φi (x, t, p)))

+ (1 + τgi (x, t, p))ni (x, t)φi (x, t, p)
]
dp + τni (x, t)U

= τ

∫

R

p2
[
div(Di (x)∂x (ni (x, t)φi (x, t, p))) + gi (x, t, p)ni (x, t)φi (x, t, p)

]
dp

+ ni (x, t)
∫

R

p2φi (x, t, p)dp − ni (x, t + τ)q2i (x, t + τ) + τni (x, t)U

= τ
[
div(Di (x)∂x (ni (x, t)vi (x, t))) + div(Di (x)∂x (ni (x, t)q

2
i (x, t)))

]

+ τni (x, t)
∫

R

p2gi (x, t, p)φi (x, t, p)dp + ni (x, t)vi (x, t)

−
(
ni (x, t + τ)q2i (x, t + τ) − ni (x, t)q

2
i (x, t)

)
+ τni (x, t)U.

Dividing both sides of the above equation by τ and taking the limit as τ → 0, we
obtain
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∂t (ni (x, t)vi (x, t))

= div(Di (x)∂x (ni (x, t)vi (x, t)))

+ div(Di (x)∂x (ni (x, t)q
2
i (x, t)))

+ ni (x, t)
∫

R

p2gi (x, t, p)φi (x, t, p)dp − ∂t (ni (x, t)q
2
i (x, t)) + ni (x, t)U.

(31)

Note that,

div(Di (x)∂x (ni (x, t)q
2
i (x, t))) = q2i (x, t) div(Di (x)∂xni (x, t))

+ 2ni (x, t)qi (x, t) div(Di (x)∂xqi (x, t))

+ 2ni (x, t) (∂xqi (x, t),Di (x)∂xqi (x, t))Rm

+ 4qi (x, t) (∂xni (x, t),Di (x)∂xqi (x, t))Rm .

Moreover, ∂t (ni (x, t)q2i (x, t)) can be calculated using the chain rule and Eqs. (1) and
(2), whereinGi (x, u) and Hi (x, u) are given by (27) and (30), respectively. Therefore,
(31) gives

∂t (ni (x, t)vi (x, t)) = div(Di (x)∂x (ni (x, t)vi (x, t)))

+ ni (x, t)

[
2 (∂xqi (x, t),Di (x)∂xqi (x, t))Rm

+
∫

R

p2gi (x, t, p)φi (x, t, p)dp

− 2qi (x, t)
∫

R

pgi (x, t, p)φi (x, t, p)dp

+ Gi (x, u(x, t))q2i (x, t)+U

]
. (32)

Now, note that

div(Di (x)∂x (ni (x, t)vi (x, t))) = vi (x, t) div(Di (x)∂xni (x, t))

+ 2 (∂xni (x, t),Di (x)∂xvi (x, t))Rm

+ ni (x, t) div(Di (x)∂xvi (x, t)).

Therefore, using the chain rule on the left hand side of (32) and substituting (1) into
the result, we obtain

∂tvi (x, t) = div(Di (x)∂xvi (x, t)) + 2

(
∂xni (x, t)

ni (x, t)
,Di (x)∂xvi (x, t)

)

Rm

+ 2 (∂xqi (x, t),Di (x)∂xqi (x, t))Rm + Wi (x, u(x, t)),
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where

Wi (x, u(x, t)) :=
∫

R

p2gi (x, t, p)φi (x, t, p)dp

− 2qi (x, t)
∫

R

pgi (x, t, p)φi (x, t, p)dp

− Gi (x, u(x, t))
(
vi (x, t) − q2i (x, t)

)
+U. (33)

This gives (3) provided Wi (x, u) is shown to be given by (6).
Now, to complete the derivation of (1)–(3), it remains to show that Gi (x, u),

Hi (x, u), and Wi (x, u) can be given by (4), (5), and (6), respectively. For simplic-
ity of exposition, the dependence of functions ni , qi , vi , gi , and φi on variables x and
t , as well as the dependence of Ri , Ki , and Q on x , are not explicitly shown in the rest
of this section.

We begin with calculating g j (p). Using (21) and (23), the integral in (17) can be
written as

∫

R

αi j (p, p
′)φ j (p

′)dp′

= Λi j exp(κ2V̄i j )√
2πv j

∫

R

exp

(
− (p − p′ + 2κV̄i j )

2

4V̄i j

)
exp

(
− (p′ − q j )

2

2v j

)
dp′

= Λi j exp(κ2V̄i j )√
2πv j

M̂ j (u)

∫

R

Â j (p
′, u)dp′, (34)

where

M̂ j (u) := exp

⎛

⎜⎜⎜⎝−
−[2v j (p + 2κV̄i j ) + 4V̄i j q j ]2

2v j + 4V̄i j
+ 2v j (p + 2κV̄i j )

2 + 4V̄i j q2j

(4V̄i j )(2v j )

⎞

⎟⎟⎟⎠

= exp

(
−[q j − (p + 2κV̄i j )]2

2v j + 4V̄i j

)
, (35)

and

Â j (p
′, u) := exp

(
− (p′ − μ̂ j (u))2

2σ̂ 2
j (u)

)
, (36)

with

μ̂ j (u) := 2v j (p + 2κV̄i j ) + 4V̄i j q j

2v j + 4V̄i j
, σ̂ 2

j (u) := 1

2

(4V̄i j )(2v j )

2v j + 4V̄i j
. (37)

123



   37 Page 46 of 52 F. Shirani, J. R. Miller

Note that
∫
R
Â j (p′, u)dp′ = √

2πσ̂ j (u). Therefore, substituting the results into (17),
we obtain

gi (p) = Ri − Ri

Ki

N∑

j=1

√
2V̄i jΛi j exp(κ2V̄i j )√

v j + 2V̄i j

exp

(
−[q j − (p + 2κV̄i j )]2

2v j + 4V̄i j

)
n j

− S

2
(p − Q)2. (38)

Now, we substitute (38) into (27) to calculate Gi (x, u). Note that,

∫

R

Riφi (p)dp = Ri , (39)
∫

R

S

2
(p − Q)2φi (p)dp = S

2

∫

R

(p2 − 2pQ + Q2)φi (p)dp

= S

2

[
(vi + q2i ) − 2qiQ + Q2)

]

= S

2

[
(qi − Q)2 + vi

]
. (40)

Moreover, the integral associated with the term inside the summation in (38) can be
calculated using similar calculation as given for (34). Specifically, as compared with
(34)–(37),

1√
2πvi

∫

R

exp

(
−[q j − (p + 2κV̄i j )]2

2v j + 4V̄i j

)
exp

(
− (p − qi )2

2vi

)
dp

= Mi j (u)√
2πvi

∫

R

Ai j (p, u)dp, (41)

where Mi j (u) is given in (7) and

Ai j (p, u) := exp

(
− (p − μi j (u))2

2σ 2
i j (u)

)
, (42)

with

μi j (u) := 2vi (q j − 2κV̄i j ) + (2v j + 4V̄i j )qi
2vi + (2v j + 4V̄i j )

, σ 2
i j (u) := 1

2

(2v j + 4V̄i j )(2vi )

2vi + (2v j + 4V̄i j )
.

(43)

Now, note that
∫
R
Ai j (p, u)dp = √

2πσi j (u). Therefore, substituting (38) into (27),
using (39)–(43), and letting Ci j (u) be defined as in (7), the mean growth rate Gi (x, u)

is obtained as given by (4).
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Next, we substitute (38) into (30) to calculate Hi (x, u). We can write

∫

R

pRiφi (p)dp = Ri qi , (44)

−
∫

R

p
S

2
(p − Q)2φi (p)dp = −S

2

∫

R

(p3 − 2p2Q + pQ2)φi (p)dp

= −S

2

[
(3vi qi + q3i ) − 2(vi + q2i )Q + qiQ

2)
]
. (45)

Note that (45) is equal to Ei (x, u) as defined in (7). Moreover, as compared with
(34)–(37),

1√
2πvi

∫

R

p exp

(
−[q j − (p + 2κV̄i j )]2

2v j + 4V̄i j

)
exp

(
− (p − qi )2

2vi

)
dp

= Mi j (u)√
2πvi

∫

R

pAi j (p, u)dp, (46)

where Mi j (u) and Ai j (p, u) are given by (7) and (42), respectively. Therefore, we
have

∫
R
pAi j (p, u)dp = √

2πσi j (u)μi j (u), where μi j (u) and σi j (u) are given by
(43). Now, letting Li j (u) be defined as in (7), Eq. (30) along with (38) and (43)–(46)
gives Hi (x, u) as in (5).

Finally, we use (33) with (38) and (30) to calculate Wi (x, u). Note that,

∫

R

p2Riφi (p)dp = (vi + q2i )Ri , (47)

−
∫

R

p2
S

2
(p − Q)2φi (p)dp = −S

2

∫

R

(p4 − 2p3Q + p2Q2)φi (p)dp

= −S

2

[
(3v2i + 6vi q

2
i + q4i )

−2(3vi qi + q3i )Q + (vi + q2i )Q
2)

]

=: Ŷi (x, u), (48)

and, as compared with (34)–(37),

1√
2πvi

∫

R

p2 exp

(
−[q j − (p + 2κV̄i j )]2

2v j + 4V̄i j

)
exp

(
− (p − qi )2

2vi

)
dp

= Mi j (u)√
2πvi

∫

R

p2Ai j (p, u)dp, (49)

where Mi j (u) and Ai j (p, u) are given by (7) and (42), respectively. It follows that∫
R
p2Ai j (p, u)dp = √

2πσi j (u)[σ 2
i j (u)+μ2

i j (u)], whereμi j (u) and σi j (u) are given
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by (43). Therefore, the first integral in (33) can be written as

∫

R

p2gi (p)φi (p)dp = (vi + q2i )Ri − Ri

Ki

N∑

j=1

P̂i j (u)Mi j (u)Ci j (u) + Ŷi (x, u)

(50)

where Ŷi (x, u) is given by (48) and

P̂i j (u) := vi (v j + 2V̄i j )

vi + v j + 2V̄i j
+ L2

i j (u). (51)

Moreover, the second integral in (33) can be calculated immediately using (30) and
(5). The result along with (50) gives Wi (x, u) as in (6), wherein Pi j (u) = P̂i j (u) −
2qi Li j (u) and Yi (x, u) = Ŷi (x, u) − 2qi Ei (x, u)+U. Note that, using (48) and (51),
we obtain Pi j (u) and Yi (x, u) as given in (7). This completes the derivation of the
model.

Finally, the homogeneousNeumannboundary conditions (8) are obtainedby assum-
ing no phenotypic flux through the boundaries, that is,

Di (x)∂x (ni (x, t)φi (x, t, p)) = 0, i = 1, . . . ,N,

for all (x, t) ∈ {a, b} × [0, T ] and all p ∈ R. (52)

Integrating this condition with respect to p over R and noting that in general Di

is nonzero on the boundary, we obtain the boundary condition ∂xni = 0 as in (8).
Moreover, it follows from multiplying (52) by p, integrating the result over R, and
using the condition ∂xni = 0, that ∂x (niqi ) = ni∂xqi = 0 on the boundary. This gives
the boundary condition ∂xqi = 0 given in (8), since ni is not required to be zero on
the boundary under a no-flux condition. The boundary condition ∂xvi = 0 given in (8)
is obtained similarly by multiplying (52) by (p − qi (x, t))2 and integrating the result
over R.

Appendix B: Numerical Methods and Discretization Parameters

The numerical solutions presented in Sects. 4 and 5 have been computed using an
Alternating Direction Implicit (ADI) scheme with two stabilizing correction stages,
as presented by Hundsdorfer (2002, Eq. (20)). The parameter θ in the formulation of
this scheme is set to θ = 1/2. The function F in the formulation has two components
when we consider a one-dimensional geographic space. One of these components is
associatedwith the terms involving spatial derivatives, and the other component is asso-
ciated with the reaction terms. For the two-dimensional space considered in Sect. 5.4,
the function F has three components, first component associated with derivatives with
respect to x1, second component associated with derivatives with respect to x2, and
third component associated with the reaction terms. We treated all components in
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both spatial dimensions implicitly. For further details of this numerical method, see
the results developed by Hundsdorfer (2002) and in ’t Hout and Welfert (2007).

In each iteration of the scheme, instead of solving the nonlinear algebraic equations
of the scheme using Newton’s method, we have solved the linearized version of these
equations. This is in fact equivalent to performing only one Newton iteration. The
required changes in the formulations to incorporate this linearization step are also
provided by Hundsdorfer (2002). The computational time that is saved by solving
linearized equations can then be used to allow for smaller time steps, which can in
turn compensate for the loss of accuracy due to the linearization. Linearizing the
scheme has the advantage of providing a better control over the total computation
time of the simulations, as the computation time will then become almost linearly
proportional to the time steps.

Finally, we have used fourth-order centered difference approximations for both first
and second derivatives in each spatial direction. In one-dimensional space, we have
considered a uniform discretization mesh of size Δx = 0.1X, as well as uniform
time steps of length Δt = 0.002T. For the two-dimensional problem of Sect. 5.4, we
have used a rectangular mesh of size Δx1 × Δx2 = 0.5 × 0.5X2, and a time step of
Δt = 0.01T.
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