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Abstract

Phenotype-dependent optimal dispersal or matching habitat habitat choice strategies
can play pivotal roles in range evolution and persistence of a species. Such strategies
facilitate rapid adaptation, increase range expansion abilities, and create directed gene
flow that promotes genetic differentiation, reproductive isolation, and speciation. How-
ever, despite the potential for such crucial consequences, solid empirical evidence that
confirms the evolution of phenotype-optimal dispersal in nature is limited. To under-
stand the reasons, it is important to identify the major eco-evolutionary impacts of op-
timal dispersal, the conditions under which it is sufficiently beneficial to evolve, and the
factors that can be used to reliably detect it. To contribute to such understanding, we
develop and computationally study a spatially-structured continuum model of a species’
range evolution in a heterogeneous environment. The individuals of the species in our
model follow the environmental gradient in a fitness-related phenotypic trait and settle
in habitat locations that best match their phenotype. Our results identify presence of a
steep environmental gradient—possibly steeper than the gradient the majority of species
typically experience in nature—as a key factor in making phenotype-optimal dispersal
sufficiently consequential to evolve. In a steep gradient, we show that optimal dispersal
facilitates rapid adaption in single-generation time scales, reduces within-population
trait variation, increases range expansion speed, and enhances the chance of survival in
rapidly changing environments. Moreover, it creates a directed gene flow that reverses
the maladpative core-to-edge effects of random gene flow caused by random movements.
Therefore, we suggest adaptive gene flow to range margins, as well as substantially re-
duced trait variation at central populations, as two key factors to be considered for
detecting phenotype-optimal dispersal in natural populations.
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Introduction

A species’ range evolves through complex eco-evolutionary processes that vary in time and space.
These processes involve numerous factors, such as, species’ niche limitations, intra- and inter-specific
competitions, Allee effects, species’s dispersal strategies and dispersal limitations, genetic structure
of the species’s population, gene flow, genetic drift, landscape heterogeneity and fragmentation,
and environmental stress gradients (Angert et al., 2020; Bridle and Vines, 2007; Case et al., 2005;
Duckworth and Badyaev, 2007; Fronhofer and Altermatt, 2015; Gaston et al., 2003; Godsoe et al.,
2017; Haddad et al., 2015; Holt and Keitt, 2005; Louthan et al., 2015; Miller et al., 2020; Ponchon
and Travis, 2022; Sexton et al., 2009; Shirani and Miller, 2022). Understanding the mechanisms
through which the convoluted interactions between these factors affect a species’ range dynamics
is crucial in predicting how the species’ population distribution will respond to climate change. It
is also crucial in identifying conditions that result in biological invasions. Therefore, the knowledge
gained by studying causes and consequences of species’ range evolution is critical in developing
strategies for controlling invasive species, and informing management and conservation efforts for
preserving biodiversity (Rafajlović et al., 2022).

Dispersal: A key factor in range evolution

One of the key ecological factors that determine a species’ range dynamics is dispersal. Obviously,
if a species does not disperse to unoccupied habit locations, then it cannot expand its range.
However, the contribution of dispersal to the speed and pattern of range expansion is far beyond
the trivial generation of pure displacements. In fact, the species’ establishment, evolution, and
persistence are all tightly linked to its dispersal (Baguette et al., 2013; Bonte et al., 2012; Bowler and
Benton, 2005; Ronce, 2007). Hence, it is crucial for the survival and range expansion of a species’
population to develop adaptive dispersal strategies based on its habitat structure, its intera- and
interspecific interactions, and climatic changes in its environment. This makes dispersal a complex
multi-dimensional phenotype that evolves jointly with multiple morphological, physiological, and
behavioral traits in response to spatiotemporal variations in the environment (Baguette et al., 2013;
Baines et al., 2019; Bonte et al., 2012; Clobert et al., 2009; Cote et al., 2017; Lustenhouwer et al.,
2023; Ronce, 2007; Saastamoinen et al., 2018). Such convoluted evolution of dispersal is driven
by the balance between the cost incurred at each of the three interdependent stages of dispersal—
departure (emigration), transfer, and settlement (immigration)—and the overall benefit acquired
from the dispersal (Bonte et al., 2012; Bowler and Benton, 2005; Cote et al., 2017; Garant et al.,
2007). In animals, the cost-benefit balance of the individuals’ dispersal strategy is often informed
by a set of external cues as well as internal phenotypic traits, making their evolution of informed
dispersal both condition-dependent and phenotype-dependent (Bonte et al., 2012; Clobert et al.,
2009; Cote et al., 2017; Ponchon and Travis, 2022).
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Impacts of dispersal on fitness

Dispersal is a major component of an individual’s fitness in a heterogeneous landscape (Baguette
et al., 2013). In some species of animals, such as herbivorous insects, individuals have no prior
information about the quality of the surrounding habitat and make non-directional movements
based only on the information they have about their current (possibly degraded) local habitat
(Armsworth and Roughgarden, 2008). In general, the fitness of individuals decreases if they ran-
domly disperse from their natal habitat locations, where they are likely better adapted to, to other
locations wherein their genotypes are not tested. Therefore, the migration load imposed by ran-
dom dispersal usually decreases the mean fitness of a population (Bolnick and Otto, 2013; Bonte
et al., 2012; Edelaar and Bolnick, 2012; Lenormand, 2002) However, there is empirical evidence in
a wide range of animal species confirming that individuals often bias their dispersal towards pre-
ferred habitat locations (Armsworth and Roughgarden, 2008; Bolnick and Otto, 2013; Cote et al.,
2017). Most generally, a population’s mean fitness increases when informed nonrandom disper-
sal strategies evolve in its individuals—that is, when the directed dispersal of individuals to new
habitat locations provides them with a fitness (benefit) increase that is sufficiently exceeding their
dispersal cost (Bowler and Benton, 2005; Cote et al., 2017; Edelaar and Bolnick, 2012, 2019; Jacob
et al., 2017; Nicolaus and Edelaar, 2018). To make such fitness-associated dispersal, some animals
can efficiently orient their movements by actively using different sources of information, such as
abiotic cues, landscape landmarks, and presence and behavior of conspecifics. For example, noctur-
nal snakes sense the temperature and physical structure of rocks to move to thermally preferable
habitats. (Bowler and Benton, 2005; Clobert et al., 2009; Ponchon and Travis, 2022).

Matching habitat choice: An adaptive dispersal strategy

Ideally, when individuals can perceive all components of their absolute fitness and are able to move
freely, they can direct their dispersal to climb local fitness gradients and achieve their maximum
expected fitness. Using individual-based models, the impacts of such fitness-dependent dispersal
on adaptation and population dynamics of a species have been studied in a number of theoretical
works (Armsworth, 2009; Armsworth and Roughgarden, 2005, 2008; Ravigné et al., 2009; Ruxton
and Rohani, 1999). However, acquiring information about all major components of fitness is rather
impossible. Instead, a more realistic, yet fairly idealized, informed dispersal strategy has been
conceptualized in which dispersing individuals choose habitat locations that best match their fitness-
related phenotype(s). For example, it has been suggested that medium ground finches with deeper
bills tend to settle in areas richer in large-seeded plants, as their bill can crack larger seeds and
thereby increase their food intake (Edelaar and Bolnick, 2019). Hence, with this type of phenotype-
and condition-dependent adaptive dispersal—which is often referred to as matching habitat choice
(Edelaar et al., 2008)—the expected performance of the individuals is maximized. Most likely, due
to the correlation between individuals’ phenotype and fitness, this maximized performance also
leads to a significant increase in the individuals’ fitness. (Edelaar and Bolnick, 2019).

Although strong evidence for the evolution of matching habitat choice in nature is still limited,
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a growing number of experimental and empirical studies have identified it in different species. For
instance, using microcosms of a ciliate species which shows genetic variability in performance along a
thermal gradient, Jacob et al. (2017) have experimentally shown that local adaptation to the upper
margin of the species’ thermal niche is favored by dispersal with matching habitat choice, whereas it
is hindered under random dispersal. Similarly, in a semi-natural warming experiment using a model
species of reptiles, Bestion et al. (2015) have shown that individuals disperse to warmer or cooler
habitats based on their preferred living temperature. In another study, Karpestam et al. (2012)
manipulated the dorsal color of a pygmy grasshopper species to black and white, and observed the
individuals’ distribution over a solar radiation mosaic. They have demonstrated that, on average,
black-painted individuals tend to reside in habitats with less radiation, and white-painted females
had more hatchlings than black-painted ones in increased radiation treatments. Color-dependent
habitat choice has also been identified in dark and pale reddish-pheomelanic barn owls (Dreiss
et al., 2012). Mark-recapture data on nomadic crossbill birds has also proposed matching habitat
choice as a contributor to rapid diversification of this species’ ecotypes Benkman (2017).

Eco-evolutionary impacts of matching habitat choice

With matching habitat choice, individuals sort themselves across the environment to minimize their
phenotype-environment mismatch. This induces an evolutionary force that acts at the individual
level and permits local adaptation in ecological (within-generation) timescales, even in th absence
of natural selection. Such mode of rapid adaptation is essentially different form adaptation by
natural selection—which occurs at the population level and progresses in evolutionary (between-
generation) timescales. Importantly, the preferential sorting across the environment also leads
to substantial inter-individual variability in the distance and direction of dispersal, which creates
specifically directed nonrandom gene flow in the population (Bolnick and Otto, 2013; Edelaar and
Bolnick, 2012, 2019).

Verbal and individual-based models have identified significant consequences of the non-random
gene flow and local adaptation caused by matching habitat choice. If a sufficiently large number of
individuals disperse preferentially, the resulting non-random gene flow effectively compensates for,
or even reverses, the homogenizing (maladaptive) effects of gene flow caused by randomly dispers-
ing individuals. As a result, the standing genetic variation within locally adapted populations is
reduced, whereas the genetic divergence between the populations is promoted (Edelaar and Bolnick,
2019). The enhanced genetic differentiation at the meta-population scale can then indirectly cause
assortative mating by decreasing reproductive interactions among local populations. The resulting
reproductive isolation and phenotypic segregation can eventually lead to sympatric speciation and
increased biodiversity (Berner and Thibert-Plante, 2015; Bolnick and Otto, 2013; Edelaar et al.,
2008; Karpestam et al., 2012; Nicolaus and Edelaar, 2018; Ravigné et al., 2009).

Despite the supporting experimental and empirical evidence—although still relatively scare—
and the theoretically-predicted evolutionary consequences, the impacts of matching habits choice
on species’ fitness and adaptive evolution have largely been overlooked by researchers. In particular,
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it is still not well-understood how the phenotype-dependent spatial assortment of individuals and
the non-random gene flow created by matching habitat choice will influence the adaptive range
expansion of a species. Importantly, further investigation is needed to understand how the increased
level of competition between phenotypically localized individuals compromises the adaptive effects
of directed gene flow on populations’ mean fitness and phenotypic variation. In spatially structured
populations, such interactions can be essentially different in central versus marginal populations.
Due to such complexities, intuitive predictions of the consequences of these interacting processes on
range expansion dynamics can potentially be misleading. Theoretical models are hence helpful in
providing more reliable predictions, and guiding empirical and experimental studies. In particular,
the prediction of the models can be used to identify conditions under which adaptive habitat choice
is sufficiently consequential to be observable in nature.

Present work: Range evolution with phenotype-optimal dispersal

We develop and analyze a continuum model of a species’ range evolution in a heterogeneous envi-
ronment. The individuals’ in our model disperse based on a special form of matching habitat choice
strategy. In the general form of matching habitat choice formalism, it is assumed that individuals
are able to collect information about the entire available habitat and directly disperse to the loca-
tion (patch) that provides them with the best phenotype-environment match compared with any
other habitat locations. This idealized assumption is rather unrealistic, as acquiring such global
information about the habitat, even if possible, is very costly. Instead, we assume that individuals
only locally assess their immediate surrounding environment and direct their movement towards
the neighboring locations that maximally match their phenotype. Once moved to a new location,
the individuals make assessments of the new surrounding areas, and make further movements to
better matching locations. By continuously repeating this assessment-and-movement processes,
the individuals eventually settle in a location which best matches their phenotype compared with
other locations in their perceivable surroundings. Equivalently, in this mode of adaptive dispersal
individuals direct their movements by following the direction of the gradient in environmental opti-
mum phenotype, until they reach an optimally matching location. Depending on the spatial profile
of the optimum phenotype, the eventually reached location by each individual can be the globally
optimal habitat location which provides the individual with best possible phenotype match, or it
can only be a locally optimal location. We refer to this form of matching habitat choice by track-
ing the environmental gradient as phenotype-optimal dispersal, and use our model to predict its
evolutionary impacts on a species’ range expansion dynamics.

We include a combination of both random and phenotype-optimal dispersal in our model.
The random (diffusive) dispersal component can be considered as a model of local exploratory
movements that the individuals undertake to assess their surrounding area and develop a perception
of the direction and magnitude of environmental gradient. Such exploratory movements prior
to dispersal have indeed been observed in nature (Armsworth and Roughgarden, 2005; Selonen
and Hanski, 2006). The random dispersal can also incorporate the effects of other uniformed
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movements, such as short-range movements to escape kin competition or inbreeding (Clobert et al.,
2009). Moreover, the inclusion of random dispersal further provides the possibility for individuals
to leave a locally optimal location and eventually settle in a location that globally optimizes their
phenotype-environment performance.

The phenotype-optimal dispersal in our model is made by individuals who perceive both a
phenotype-environment mismatch and a non-zero environmental gradient. If the environmental
gradient is zero, or the individuals are not sensitive to it, then there will be no directed dispersal
as all surrounding areas appear to be equally preferable to the individuals. In addition to each
individual’s direct sensory assessment, the individuals can perceive the gradient in the environ-
mental optimum phenotype through their collective movement behavior. Moreover, tracking the
environmental gradient can also occur through taxis, that is, in response to environmental stimuli
(guides) that are strongly correlated with the optimum gradient. For instance, changes in tempera-
ture, chemical concentration, topography, wind strength and direction, water flow, or light intensity
can effectively canalize the movement of individuals in the direction of the environmental gradient
(Baguette et al., 2013).

We develop our model in a quantitative genetic framework as a system of partial differential
equations (PDEs), presenting joint evolution of a species’ population density, mean value of a fitness-
related quantitative phenotypic trait, and the variance of the trait. We consider a heterogeneous
environment with spatially varying optimal value for the phenotypic trait. In addition to ran-
dom and phenotype-optimal dispersal, we incorporate directed and stabilizing selection, frequency-
dependent selection generated by phenotype-dependent competition, and mutational changes in
phenotype frequencies. We do not directly include any dispersal cost. However, the presence of
intraspecific competition indirectly imposes a cost on the optimal dispersal, as phenotypically as-
sorted individuals will experience intensified competition due to their close phenotype values. Also,
we do not model the evolution of optimal dispersal. We assume the propensity to disperse optimally
is already evolved in the individuals. However, we allow for the optimal dispersal propensity to be
an adjustable parameter, so that we can make observations at different levels of evolved optimal
dispersal.

We use our model to investigate how phenotype-optimal dispersal affects local adaptation rate,
core-to-edge asymmetric gene flow, trait variance, population density, and expansion wave speed.
In addition to computationally provided predictions, the mean-field PDE-based framework of our
model allows for gaining useful mechanistic insight by directly inspecting each of the terms asso-
ciated with the optimal dispersal in the equations of the model. We further analyze the perfor-
mance of optimally dispersing populations under abrupt environmental fluctuations, as well as in
fragmented habitats. We specifically aim to identify conditions that result in sufficiently strong
impacts of phenotype-optimal dispersal, to suggest possible explanation for relative infrequency of
matching habitat choice in nature.
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Model Description

We build our model on our previous work (Shirani and Miller, 2022), which was an extension of the
seminal works of Kirkpatrick and Barton (1997) and Case and Taper (2000) and aimed to study
the adaptive range dynamics of a community of interacting species over an environmental gradient.
Since in the present work we investigate the range evolution of a solitary species, we use a reduced
version of our previous multi-species model to a single species case. We incorporate into the model
new components that additionally capture the effects of phenotype-optimal dispersal. We describe
only those details of our previous work that are necessary for a clear description of the new model.
We refer the reader to our previous work for further details.

We model the m-dimensional habitat of the species by an open rectangle Ω ⊂ Rm. Although
in general the habitat can be 3-dimensional, in this study we only consider 1- and 2-dimensional
habitats. We model the adaptive range dynamics of the species at each location x = (x1, . . . , xm) ∈
Ω and time t ∈ [0, T ], over an evolution time horizon of T > 0, by deriving equations that govern
the joint evolution of three population quantities: n(x, t) denoting the population density of the
species, q(x, t) denoting the mean value of a fitness-related quantitative phenotypic trait within the
population, and v(x, t) denoting the intraspecific variance of the trait.

The derivation of the equations of the model relies on a basic equation that specifies, over
a small interval of time, the variation in population density of individuals with a quantitative
phenotypic trait value of p. To present this equation, we first denote by φ(x, t, p) the relative
frequency of phenotype value p ∈ R among all individuals of the species’ population. Moreover,
we denote by g(x, t, p) the intrinsic growth rate of the population of individuals with phenotype
value p. This intrinsic growth rate, as given below in (5), includes a Lotka-Volterra model of
intraspecific competition. We denote by α(p, p′) the competition kernel that captures the per
capita effect of individuals with phenotype p′ on the frequency of individuals with phenotype p
within the population. In addition, we denote by ∂(M)

t φ(x, t, p) the rate of mutational changes in
the frequency of phenotype p. The basic equation underlying the derivation of the model can then
be presented as

n(x, t+ τ)φ(x, t+ τ, p)− n(x, t)φ(x, t, p)

= τ div
(
D(x)∇x

(
n(x, t)φ(x, t, p)

))
(1a)

− τ div
(
A(x)n(x, t)φ(x, t, p)

(
−∇xθ(p, x)

))
(1b)

+ τg(x, t, p)n(x, t)φ(x, t, p) (1c)

+ τn(x, t)∂(M)
t φ(x, t, p), (1d)

where ∇x denotes the gradient with respect to x, div denotes the divergence with respect to x,
and ∂t denotes the partial derivative with respect to t. In writing (1), we assume that the amount
of change in the population density of individuals with phenotype p over a small time interval of
τ → 0 results from the contributions of four factors: random dispersal of individuals to and from
neighboring locations, modeled by (1a); directed (optimal) dispersal of individuals in the direction
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that gives them maximum environmental match, modeled by (1b); the intrinsic growth of the
population, modeled by (1c); and the mutational changes in the relative frequency of p, modeled
by (1d). Parameter D denotes the diffusion coefficient of the species’ random dispersal. Parameter
A and the term −∇xθ in (1b) can be interpreted, respectively, as individuals’ propensity and
individuals’ perceived force to disperse optimally. Further descriptions on these terms are provided
in the Optimal Dispersal section below.

Below, we first provide the list of key assumptions that we have made in writing (1) and the
other formulations in the rest of the paper. We then give the formulation of the species’ intrinsic
growth rate g(x, t, p) in (1c), and describe in detail how we model the optimal dispersal in (1b).
The diffusion term (1a) that models species’ random dispersal is standard, and the formulation for
the effect of mutational changes in (1d), based on Assumption (viii) below, is given in Section A.3
in our previous work (Shirani and Miller, 2022).

Model Assumptions

To derive the equations of our model, we make the following major assumptions on the populations’
dispersal and reproduction, as well as the elements of the intrinsic growth rate and the intraspecific
competition kernel.

(i) Random dispersal of the individuals in the habitat is made by diffusion.

(ii) An individual’s environmental potential for making optimal dispersal is proportional to the
square of the difference between its phenotype value and the environment’s optimum pheno-
type.

(iii) Nonlinear environmental selection for an optimal phenotype Q is stabilizing for all x ∈ Ω.
The optimal phenotype can vary over space and time.

(iv) The frequency of phenotype values within the species is normally distributed at each occupied
point in space at all times. That is,

φ(x, t, p) := 1√
2πv(x, t)

exp
(
−(p− q(x, t))2

2v(x, t)

)
, x ∈ Ω, t ∈ [0, T ]. (2)

(v) The reproduction rate of the individuals with phenotype p depends (predominantly) on the
population density of the individuals with the same phenotype p.

(vi) The environmental resources vary continuously along a resource axis. After identifying the
resource axis by phenotype axis, as described in Section A.2 of our previous work (Shirani
and Miller, 2022), the phenotype utilization distribution by an individual with phenotype p is
assumed to be normal, given by

ψp(p̃) :=
1√
2πV

exp
(
−(p̃− p)2

2V

)
, i = 1, . . . ,N, (3)

where V denotes the variance of phenotype utilization be any individuals of the species.
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(vii) The strength of intraspecific competition between the individuals is determined by the overlap
between their phenotype utilization curves, which give the competition kernel as

α(p, p′) = exp
(
−(p− p′)2

4V

)
. (4)

The details of the derivation of this kernel function are available in Sections A.2 and A.4 of
our previous work (Shirani and Miller, 2022). Here, we only consider symmetric competition
between the individuals of different phenotypes, that is, κ = 0 in the formulation given in our
previous work.

(viii) The probability of mutational changes from one phenotype p to another phenotype p′ depends
on the difference between the phenotypes δp = p − p′. Letting ν(δp) denote the probability
density of such mutational changes, we further assume that ν follows a distribution with
constant zero mean and constant variance Vm. See Section A.3 of our previous work (Shirani
and Miller, 2022) for the formulation of our model of mutational changes.

Intrinsic Growth Rate

In the absence of dispersal and genetic mutations, the local population dynamics of the species is
determined by the intrinsic growth rate of the individuals, which we model as (Shirani and Miller,
2022: Equ. (17)),

g(x, t, p) := R(x)
(
1− 1

K(x)n(x, t)
∫
R
α(p, p′)φ(x, t, p′)dp′

)
(5a)

− S
2(p−Q(x))2, (5b)

where R denotes the maximum growth rate of the species, K denotes the carrying capacity of
the environment, S denotes the strength of stabilizing selection, and Q denotes the environment’s
optimal trait value. The phenotype distribution φ and the competition kernel α are given by (2)
and (4), respectively. The convolution term in the Lotka-Volterra model (5a) captures the effect
of intraspecific phenotypic competition on the frequency of phenotype p. The quadratic term (5b)
incorporates the effects of directional and stabilizing selection on individuals with phenotype p, by
penalizing the phenotypes that are far from the optimal phenotype Q(x).

Optimal Dispersal

We model the species’ phenotype- and environment-dependent optimal dispersal by the advection
term (1b). The parameter A is analogous to the mobility parameter that is often used in drift-
diffusion models of flowing particles in a liquid. In our model, we can reasonably interpret A as
a simplified model of individuals’ propensity to disperse optimally. The evolution of a species’
dispersal propensity depends on many factors, such as costs and benefits of different stages of
dispersal, environmental conditions, and frequency-dependent eco-evolutionary processes (Bonte
et al., 2012; Clobert et al., 2009). Moreover, the dispersal propensity of the individuals of a species
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is often plastic, and can change in an ecological time scale. We do not include the evolution of the
species’s optimal dispersal propensity in our model though, as the required information is lacking.
Instead, we perform our studies with different values of A to observe if different degrees of dispersal
propensity will be sufficiently beneficial to evolve in a species. Although the equations of our model
allow for A to be dependent on space, in the results we present in this work we assume A to be
constant in space and time.

The term −∇xθ(p, x) in (1b) is analogous to the force applied to the particles of drift-diffusion
models due to the presence of an external potential energy θ(p, x). In our model, θ(p, x) is inter-
preted as individuals’ perceived dispersal potential, which depends both on phenotype p of each
individual and the (perceived) environmental trait optimum Q. As a result, the advective opti-
mal dispersal (1b) in our model represents an informed dispersal strategy that is both phenotype-
dependent (dependence on p) and condition-dependent (dependence on Q(x)), as defined by Clobert
et al. (2009). In this informed dispersal context, the phenotype value of an individual is an inter-
nal state of the individual, developed by the individual’s self perception. The environmental trait
optimum and its gradient, as described below, are external factors whose information can initiate
and direct the species’ optimal dispersal through the evolution of sensory and cognitive processing
mechanisms in the individuals.

We consider the following simplified yet meaningful model for the informed dispersal potential
function of an individual with phenotype p at habitat location x,

θ(p, x) := (p−Q(x))2

2V − 1. (6)

This potential function is a first-order approximation of the function −
√
2πVψp(Q(x)), where

ψp is the phenotype utilization distribution (3). That means, using (6), the dispersal potential
of an individual with phenotype p is determined by how poorly the individual can utilize the
environment’s optimal phenotype1 at its current location. If the individual’s phenotype matches
the optimum phenotype perfectly, then there is no phenotypically and environmentally induced
force on the individual to disperse. If the individual’s phenotype differs significantly from the
environment’s optimum—measured relative to the species’ phenotype utilization variance V—then
the individual perceives a high potential to disperse to habitat locations of better quality that match
its phenotype. Yet, a high dispersal potential θ(p, x) does not necessarily generate a significant
dispersal force −∇xθ(p, x) on the individual to disperse, unless a sufficiently large gradient in
the dispersal potential is perceived by the species’ movement. As the following discussion shows,
such potential gradient is present if the environmental gradient ∇xQ is sufficiently steep and the
individual is sufficiently sensitive to it. In this case, the species experiences a considerably better-
matching habitat after making the directed dispersal.

The dispersal potential (6) gives the dispersal force term −∇xθ used in (1b) as

−∇xθ(p, x) =
p−Q(x)

V ∇xQ(x). (7)

1Note that, as stated in Assumption (vi), in writing the phenotype utilization distribution (3) we assume an
identification between the resource axis and the phenotype axis.
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If the magnitude of the environmental gradient ∥∇xQ(x)∥Rm is zero or is perceived as equal to
zero due to insensitivity of the individual to the gradient, then the perceived dispersal force on the
individual to disperse non-randomly is zero—regardless of the presence of a phenotype-environment
mismatch p ̸= Q(x). In this case, the individual only disperses randomly due to the diffusion term
(1a). If ∥∇xQ(x)∥Rm > 0, where ∥.∥Rm denotes the Euclidean norm in Rm, then an individual
whose phenotype does not perfectly match the optimum phenotype will perceive a positive force to
disperse optimally. If p > Q(x), the optimal dispersal will be in the direction of the environmental
gradient so that the individual disperses to habitat locations with larger optimum phenotype values,
which give the individual a better phenotype-environment match. Similarly, if p < Q(x), the
optimal match will be achieved by the individual through dispersal in the opposite direction of the
environmental gradient.

The magnitude of a dispersal force perceived by an individual is unlikely to remain directly pro-
portional to the magnitude of the environmental gradient ∥∇xQ(x)∥Rm when the gradient becomes
increasingly steep. When there exists a phenotype-environment mismatch p−Q, a sufficiently steep
environmental gradient should be enough to generate a maximal force for the individual to disperse.
Developing proportional sensitivity to steeper gradients would then be unnecessarily costly for the
dispersal purpose of the individual as it does not provide further information. To approximately
incorporate such information saturation in individual’s perception of the environmental gradient,
we replace ∇xQ in (7) by the following perceived gradient whose magnitude will saturate to a
maximum value Π when ∥∇xQ(x)∥Rm becomes exceedingly large:

∇̃xQ(x) := Π
Π + ∥∇xQ(x)∥Rm

∇xQ(x), x ∈ Ωδ. (8)

When ∥∇xQ(x)∥Rm is sufficiently smaller than Π, the perceived gradient is approximately the same
as the actual gradient. When ∥∇xQ(x)∥Rm is significantly larger than Π, the magnitude of the
perceived gradient approximately saturates to the maximum value Π, but its direction will always
be the same as the direction of the actual gradient.

The smaller habitat Ωδ considered in (8) includes all points of Ω except those that are closer
than a constant δ to the boundary of Ω. This is a rather technical consideration we make to
remove the indefiniteness of the gradient at boundary points and to avoid complicated boundary
conditions. In Appendix A, we provide the details on how to smoothly extend ∇̃xQ(x) in (8) to
the whole habitat Ω, based on the assumption that the individuals can sense the habitat boundary
and avoid crossing it. Specifically, for the one- and two-dimensional habitats that we simulate in
this work, we use the definitions (17) and (18) given in the Appendix A for ∇̃xQ(x) over the entire
habitat. In all of the simulations, we assume the individuals can perceive the habitat boundary
when they get as close as δ = 2 X to the boundary. Moreover, we set the maximum perceived
gradient to be Π = 1 Q/X, which still corresponds to a relatively steep environmental gradient, as
we discussed in Section 3.2 of our previous work (Shirani and Miller, 2022). In our simulations, we
use the dispersal propensity parameter A as an adjustment parameter for the species’ total rate of
optimal dispersal.
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Replacing the actual environmental gradient in (7) with its perceived value, we write the indi-
vidual’s perceived force to disperse optimally as

−∇xθ(p, x) =
p−Q(x)

V ∇̃xQ(x). (9)

Although not possessing a true interpretation as a potential—unlike the dispersal potential θ(p, x)
given by (6)—for ease of reference we refer to the term

(
p − Q

)
/V in (9) as phenotypic potential

for optimal dispersal. We also note that the perceived gradient ∇̃xQ can be interpreted, in some
sense, as the sensitivity of the individuals’ dispersal force to changes in the habitat quality. In
nature, the individuals of a species may develop a perception of the environmental gradient not
only by directly sensing their environment’s conditions, but also by collecting information through
exploration and collective behavior of their conspecifics. The diffusive movement term (1a) that we
have included in our model can additionally capture such exploratory movements of the individuals
for the purpose of gaining a better perception of their environment’s gradient.

Model Equations

The basic equation (1) and its components as described above provide the ingredients that we need
for deriving the equations of our model for joint evolution of a species’s population density n(x, t)
and the mean value q(x, t) and variance v(x, t) of a quantitative fitness-related trait within the
species’s population. Assumption (iv) is a key assumption in developing our model as it allows
for an exact moment closure in deriving the equations for trait mean and trait variance. In this
section, we only present the ultimate equations of our model. The derivation of the equations is
provided in detail in the Appendix B.

For all x ∈ Ω and t ∈ [0, T ], we derive the equation for the evolution of the species’ population
density n(x, t) as

∂tn(x, t) = div (D(x)∇xn(x, t)) (10a)

− div
(
A(x)n(x, t)q(x, t)−Q(x)

V ∇̃xQ(x)
)

(10b)

+
(
R(x)− R(x)

K(x)

√
V

v(x, t) + V n(x, t)− S
2
[(
q(x, t)−Q(x)

)2 + v(x, t)
])

n(x, t). (10c)

Moreover, letting ⟨· , ·⟩Rm denote the standard inner product in Rm, we derive the equations for
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the population’s trait mean q(x, t) and trait variance v(x, t) as

∂tq(x, t) = div (D(x)∇xq(x, t)) (11a)

+ 2 ⟨∇x logn(x, t) , Di(x)∇xq(x, t)⟩Rm (11b)

− div
(
A(x)v(x, t)V ∇̃xQ(x)

)
(11c)

−
〈
∇x logn(x, t) , A(x)

v(x, t)
V ∇̃xQ(x)

〉
Rm

(11d)

−
〈
∇xq(x, t) , A(x)

q(x, t)−Q(x)
V ∇̃xQ(x)

〉
Rm

(11e)

− S
(
q(x, t)−Q(x)

)
v(x, t), (11f)

and

∂tv(x, t) = div(D(x)∇xv(x, t)) (12a)

+ 2 ⟨∇x logn(x, t) , D(x)∇xv(x, t)⟩Rm (12b)

+ 2 ⟨∇xq(x, t) , D(x)∇xq(x, t)⟩Rm (12c)

− 2
〈
∇xq(x, t) ,

A(x)
V v(x, t)∇̃xQ(x)

〉
Rm

(12d)

−
〈
∇xv(x, t) ,

A(x)
V

(
q(x, t)−Q(x)

)
∇̃xQ(x)

〉
Rm

(12e)

+ R(x)
K(x)

√
V

v(x, t) + V
n(x, t)v2(x, t)
2
(
v(x, t) + V

) − Sv2(x, t) + U. (12f)

Definitions of the model parameters and their plausible ranges of values are given in Table 1. Note
that D(x) ∈ Rm×m, whereas the rest of the parameters are scalar-valued. Moreover, S, U, and V
are assumed to be constant all over the habitat, whereas D, A, K, R, and Q can be variable in
space. Although their dependence on t is not explicitly shown in the equations, all these model
parameters can also vary in time. A discussion on the choice of parameter units and their plausible
values is provided below.

For our simulations of a one-dimensional habitat Ω = (a, b), we assume no phenotypic flux
through the habitat boundary. Since the perceived environmental gradient ∇̃xQ given by (17) in
Appendix A has no component normal to the boundary, the advection term (1b) does not result
in any phenotype flux through the boundary. Therefore, our no-flux boundary assumption simply
implies the following homogeneous Neumann (reflecting) boundary conditions

∂xn = 0, ∂xq = 0, ∂xv = 0, on {a, b} × [0, T ], (13)

which is the same boundary condition we discussed in Remark 1 of our previous work (Shirani and
Miller, 2022). For the two-dimensional habitat Ω = (a1, b1)× (a2, b2) that we simulate in this work,
we set reflecting boundary condition at boundary lines x1 = a1 and x1 = b1, and we assume that
the habitat is extended periodically in the x2-direction.
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Table 1: Definition and plausible range of values of the parameters of the model (10)–
(12). Except for A(x), the range of parameter values and their choice of units are the same as those
given by Shirani and Miller (2022). Unless otherwise stated, the typical values given here are the
values used in the numerical studies of the Results section.

Parameter Definition Range Typical Unit

m Spatial dimension of the geographic space {1, 2, 3} 1, 2 —

D(x) Diffusion coefficient of the species’ random dispersal [0, 25]∗ 1∗ X2/T

A(x) Measure of the species’ propensity to disperse optimally [0, 10] 4 X2/T

K(x) Carrying capacity of the environment (0, 10] 1 N/Xm

R(x) Maximum population growth rate of the species [0.1, 10] 2 1/T

V Variance of the specie’s phenotype utilization curve [0.25, 25] 4 Q2

S Measure of the strength of stabilizing selection [0, 2] 0.2 Q−2/T

U Rate of increase in trait variance due to mutation [0, 0.2] 0(0.02) Q2/T

Q(x) Optimal trait value for the environment [0,∞) Linear† Q

∥∇xQ(x)∥Rm Magnitude of the gradient of the optimal trait [0, 10] 0.2 Q/X

∗When m > 1, the range of values specified for D(x) can be considered for each entry of D(x) ⊂ Rm×m.
Typically, D is assumed to be diagonal.
†The typical value “Linear” specified for Q means that Q is typically considered to be a linear function of x
over Ω.

In comparison with the equations of the single-species model that we studied in Section 4
of our previous work, the inclusion of the optimal dispersal strategy in the present work results
in the additional term (10b) in the equation of population density, the terms (11c)–(11e) in the
equation of trait mean, and the terms (12d) and (12e) in the equation of the trait variance. As
a result, all quantitative measures of the population’s dynamics, such as the population’s density
and speed of range expansion, the local adaptation rate of the population both at its core and
its range margin, the asymmetric core-to-edge gene flow, and the dynamics of the intraspecific
trait variance are expected to be affected by individuals’ ability to disperse optimally to matching
habitats. We demonstrate such impacts under different evolutionary regimes in our computational
studies presented in the Results section.

Units and Parameter Values

We use the same units as we discussed in our previous work for the quantities included in our
model. Specifically, we denote the unit of time by T and we set 1 T to be equal to the mean
generation time of the species. For a one-dimensional habitat, we choose the unit of space so that
the diffusion coefficient D of the population becomes unity. That is, denoting the unit of space by
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X, we set 1 X to be the root mean square of the (random) dispersal distance of the population in 1 T,
divided by

√
2. Estimates of the random component of the species’ dispersal can be obtained, for

example, by measuring dispersal distance of a sub-population of individuals that are well-adapted
to the environment at the core of the population. Due to their negligible phenotype-environment
mismatch, such individuals do not perceive a significant force to make directed dispersal. For
multi-dimensional habitats, the same approach can be used to set the unit of space for each spatial
dimension independently. Moreover, we denote the unit of measurement for population abundances
by N. Having set the unit of space, we set 1 N to be equal to the carrying capacity of the environment
for 1 Xm unit of habitat volume. This results in the carrying capacity to become unity. Finally,
we denote the unit of measurement for the quantitative trait by Q, and we set 1 Q to be equal to
one standard deviation of the trait values at the core of the population. Further discussions on our
choices of units are available in Section 3.1 of our previous work (Shirani and Miller, 2022).

Our suggestions of plausible ranges of values given in Table 1 are discussed in detail in Section
3.2 of our previous work, except for the new parameter A. The values specified as ‘typical’ in
Table 1 are the values we consider as default parameter values in our simulations when otherwise
is not stated. Due to the level of abstraction that is inevitably present in our model of optimal
dispersal, finding a biologically reasonable range of values for the dispersal propensity parameter
A based on empirical measurements available in the literature does not sound practical. Instead,
we could suggest a range form 0 to 10 X2/T by simulating the model with different values of A
and observing a reasonable range of variation in the population density, speed of range expansion
waves, and magnitude of the trait variance. In an extreme situation, for example, when the mean
value of the trait in (10b) differs from Q by one phenotype utilization variance and the magnitude
of the environmental gradient is sufficiently larger than Π = 1 Q/X, then a maximum dispersal
(advection) rate of approximately 10 X/T is created in a one-dimensional habitat at propensity
value A = 10 X2/T.

Interpretation of the Model Equations

Before presenting our results obtained by numerically solving the equations of our model, we discuss
the interpretation of each of the terms involved in the equations. Inspection of the equations
provides particularity useful mechanistic insight into the less-intuitive impacts of phenotype-optimal
dispersal.

Population Density Equation

The diffusion term given by (10a) in our model gives the rate of change in the population density
of the species due to random dispersal of the individuals. The advection term (10b) incorporates
changes in population density due to the directed optimal dispersal. When the mean phenotypic
potential for optimal dispersal, (q − Q)/V, and the perceived environmental gradient ∇̃xQ are
both non-zero, the population density undergoes a directional change. If (q − Q) > 0, the whole
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population moves in the direction of the environmental gradient. If (q − Q) < 0, the population
moves in the opposite direction. In either case, the mean mismatch |q − Q| is reduced through
the directed movements. The term −S

2 (q − Q)2 in (10c) shows the effects of natural selection in
reducing the population density when the trait mean q differs from the optimum Q.

The term −S
2v in (10c) captures the effect of the phenotypic load imposed by natural selection

on the population growth, compared with a monomorphic population. Note that greater values of
trait variance create stronger phenotypic loads. The term R

K
√
V/(v +V)n in (10c) represents the

decrease in population fitness due to the average intraspecific competition between the individuals.
Unlike the phenotypic load, the average intraspecific competition becomes weaker when trait vari-
ance becomes larger. This is because larger trait variance implies greater average difference between
phenotypes and hence less competition load due to (4). Moreover, when individuals’ phenotype
(resource) utilization variance V becomes smaller, that means when the individuals become more
specialist, the average competition becomes weaker. This is because there is lower chance that
specialists will share utilizing same resources. Note that the competitive release at small values of
V can allow for population density to increase significantly above K—which is the carrying capacity
we define for sufficiently competitive (generalist) individuals with V ≫ 1.

Trait Mean Equation

The terms (11a) and (11b) show how the random gene flow caused by random dispersal affects
the rate of change of trait mean, or equivalently, the local adaptation rate of the population. The
divergence term in (11a) implicates the homogenizing effect of random gene flow. Since population
density changes sharply at the range margin, ∇x logn in (11b) is significantly larger near the edge of
the population, compared with the core. Therefore, (11b) effectively models the asymmetric core-
to-edge gene flow. In the absence of optimal dispersal, such maladaptive gene flow can potentially
result in gene swamping at marginal populations (Kirkpatrick and Barton, 1997; Lenormand, 2002).

The terms (11c)–(11e) capture the effects of individual-level optimal dispersal on the population-
level local adaptation. For the divergence term (11c), we can write

−div
(
A(x)v(x, t)V ∇̃xQ(x)

)
=−

〈∇xv(x, t)
V , A(x)∇̃xQ(x)

〉
Rm

(14a)

− v(x, t)
V div

(
A(x)∇̃xQ(x)

)
. (14b)

The inner product term (14a) implies that, due to directed movements, trait mean in a local
population is decreased when the gradient in population’s trait variance is aligned, or makes an
acute angle, with the gradient in trait optimum. Trait mean increases if the two gradients make
obtuse angle or, in particular, are in opposite direction to each other. Our simulation results
provided in our previous work (Shirani and Miller, 2022: Figure 2) and the results given in Figure
1 below, as well as empirical observations (Takahashi et al., 2016), show that trait variance during
the range expansion of a species—over a continuous habit with linearly varying trait optimum—
decreases from core to edge. That means, the trait variance gradient will be in th same direction of

16

DR
AF
T



the environmental gradient in one side of the population, whereas it will be in the opposite direction
in th other side. As a result, changes in trait mean due to (14a) will be increasing at one side and
decreasing in the other. Such changes are often adaptive. For instance, trait mean in Figure 1 will
increase due to (14a) in the right half of the population’s range, and will decrease in the left half.

The component (14b) of (11c) shows that divergence in the perceived environmental gradi-
ent can indeed result in changes in trait mean, even if population density and trait variance are
uniformly distributed. When A(x) is constant, as we assume throughout this work, trait mean
decreases if div

(
∇̃xQ(x)

)
> 0. An illustration of the movement rates and directions that result

in such a decrease in trait mean is provided in Figure S1. Similarly, trait mean increases when
div

(
∇̃xQ(x)

)
< 0. Depending on the value of the trait mean, whether it is below the trait opti-

mum or above it, such changes can be adaptive or maladaptive to the population. However, even
if the pure effect of divergence in perceived environmental gradient appears to be maladpative, its
combined effect with the several other components of the optimal dispersal present in th model—
which jointly affect population density, trait mean, and trait variance, can still be adaptive. In
this work, however, we always assume that environmental gradient is constant. This implies that
div

(
∇̃xQ(x)

)
= 0 in our simulations, except at the close vicinity of the habitat boundary. There-

fore, (14b) does not have any impacts in the local adaptation that we observe in our results due to
phenotype-optimal dispersal.

Similar to (11b), presence of the term ∇x logn in (11d) implies that this term mainly represents
the asymmetric core-to-edge effects of gene flow caused by directed dispersal. Due to the popu-
lation’s adaptation to the environment during its range expansion, ∇xq is expected to be aligned
with ∇̃xQ. Since (11d) and (11b) have opposite signs, the core-to-edge directed gene flow cause by
phenotype-optimal dispersal will indeed be adaptive at the range margin, unlike the maladaptive
effects of the asymmetric gene flow created by random dispersal. Therefore, (11d) represents one
of the main effects of adaptive habitat choice in facilitating adaptation at range margins. Note
that, (11d) further implies that larger values of trait variance provides more fuel for such adaptive
effects.

Th inner product term (11e) shows how the mean phenotypic potential for optimal dispersal,
(q − Q)/V, and the perceived environmental gradient directly cause local adaption. Due to the
expected alignment between the directions of ∇xq and ∇̃xQ, (11e) is negative when (q − Q) > 0,
and it is positive when (q−Q) < 0. In either case, the resulting change in trait mean due to (11e) is
adaptive, that is, it decreases the magnitude of the mismatch |q−Q|. Importantly, (11e) explicitly
shows that the rate of population-level adaptation is higher when the mean phenotypic potential of
individuals for optimal dispersal is greater, and their perceived environmental gradient is steeper.
Note that as the population gradually adapts to the environment, the mean phenotypic potential
for dispersal decreases asymptotically. However, the presence of trait variation in the population
can still provide additional adaptation force due to the terms (11c) and (11d) discussed above.

Finally, the reaction term (11f) represents local adaptation by natural selection. When (q−Q) >
0, this term forces a decreasing change in q, which results in a decrease in |q − Q| and enhanced
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local adaptation. Similarly, when (q − Q) < 0, the trait mean q is increased due to (11f), leading
to a decrease in |q −Q| and better adaptation. Importantly, (11f) demonstrates the crucial role of
genetic variation in enabling adaption by natural selection. The adaptation rate controlled by (11f)
is directly proportional to the level of trait variance v. Larger values of v imply greater amounts
of genetic variation for natural section to act upon, and hence faster adaption rates by natural
selection.

Trait Variance Equation

The terms (12a)–(12c) represent the effects of random dispersal on trait variance. Along with
(11a), which tends to homogenize trait mean, the divergence term in (12a) tends to homogenize
trait variance. Therefore, (11a) and (12a) together capture the homogenizing effects of random gene
flow on population’s phenotypes. Similar to what described above for the trait mean equation, the
presence of the term ∇x logn in (12b) implies that (12b) mainly captures the effects of asymmetric
core-to-edge random gene flow on trait variance. As our simulations results shown in Figure 1
below implies, ∇x logn and ∇xv are often aligned with each other during the range expansion of
a population. Therefore, (12b) is expected to be positive, and hence it tends to increase trait
variance at range margins, as the range expands. This can explain a traveling-wave profile for trait
variance, as we observe in our simulations. The inner product term (12c) is always positive, and
it depends on the magnitude of the gradient in trait mean. Since the population typically gets
well-adapted at its core, ∇xq closely follows ∇xQ at central regions of the range. As a result, (12c)
is the term which is responsible for inflating trait variance at the population’s core, a well-known
effect of random gene flow over an environmental gradient. The steeper th environmental gradient,
the larger the trait variance at central populations.

The terms (12d) and (12e) give the effects of the non-random gene flow created by optimal
dispersal on the rate of change of trait variance. Since ∇xq and ∇xQ are expected to be in the
same direction as the population adapts to the environment, (12d) typically takes negative values.
Therefore, trait variance is reduced due to (12d). Since ∇xq follows ∇xQ more closely at central
regions, and since v is also larger at those regions, the reduction in trait variance caused by (12d)
is significantly stronger at the well-adapted core of the population. The mismatch (q−Q) and the
gradient ∇xv in (12e) both take larger magnitudes near the range margins, where the population
is less-adapted. As a result, (12e) mainly influences the trait variance at marginal populations.
As discussed in our previous work (Shirani and Miller, 2022: Sect. 2.1), and shown in Figure 1
below, the decreasing core-to-edge profile of trait variance during range expansion over a constant
environmental gradient (linearly changing Q) is directly related to the spatial profile of trait mean.
Near the peripheral regions over which maladpative gene flow causes q to fall below the optimum
Q, trait variance decreases in the direction of the environmental gradient. That means, when
(q − Q) < 0, we expect

〈
∇xv , ∇̃xQ

〉
Rm

to be negative. This implies that (12e) will be negative
when (q−Q) < 0. Oppositely, near the peripheral regions over which (q−Q) > 0, we observe v to
be increasing in the direction of the environmental gradient. As a result, (12e) will also be negative
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when (q−Q) > 0. Therefore, in any case, (12e) tends to decrease the trait variance, predominantly
within less-adapted marginal populations.

The above discussion implies that the directed gene flow generated by phenotype-optimal dis-
persal reduces trait variance both within marginal and central populations. As we discussed in the
Introduction section, reducing phenotypic variation within local populations is in fact one of the
important predicted effects of adaptive dispersal, or in particular, matching habitat choice. The
terms (12d) and (12e) in our model show how this reduction is controlled by the interaction between
mean phenotypic potential for optima dispersal (q−Q)/V, trait variance, perceived environmental
gradient, and gradient in trait mean and variance.

The first term in (12f) models the effects of intraspecific competition in changing trait variance.
Note that this term is always nonnegative, implying that competition tends to increase trait vari-
ance. This is because competition reduces the fitness of individuals with close phenotype values,
while it does not significantly affect the individuals with sufficiently different phenotypes. When
V → ∞, that means when individuals become highly generalists, the completion term in (12f)
vanishes to zero and causes no inflation in trait variance. This is because competition affects the
fitness of highly generalist individuals almost uniformly, as these individuals almost equally uti-
lizes all available resources regardless of their phenotype. As a result, no phenotype variation is
generated by the competition between them. When V → 0, that means when individuals become
highly specialist, the term

√
V/(v +V) in (12f) converges to zero. However, the competitive release

gained by the population when V → 0 allows for the maximum steady-state population density
n, controlled by (10c), to take arbitrarily large values. As a result, the competition term in (12f)
remains positive (non-zero) when V → 0. Our computations of spatially homogeneous steady-state
values of trait variance imply that, when V → 0 trait variance increases to a finite value due to
this non-zero competition term; see Figures 2b and S4b for A = 0.

The term −Sv2 in in (12f) represents the well-known effect of natural selection in eroding genetic
variation by eliminating less fit individuals. Note that, the larger the trait variance v, the stronger
the effect of natural selection, and hence the higher rate of reduction in v. Finally, the presence of
the constant term U in (12f) shows the effect of mutation, as a perpetual source of genetic variation
within the population.

Results

In the Interpretation of the Model Equations section we discussed, separately, the interpretation of
each of the terms in equations of the model, and how they will potentially impact population density,
adaptation, and trait variations in a species. However, the degree to which each of these terms
contribute to the range evolution of the species is largely dependent on the complicated interactions
between the terms through the couplings between the equations. Intuitive interpretation of the
results of such interactions carry the risk of creating misleading predictions, knowing the fact that
the terms interact at significantly different timescales. In particular, whether or not phenotype-
optimal dispersal will be sufficiently consequential in range expansion dynamics of the species is
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hard to be predicted intuitively by inspecting the equations.
Since a rigorous analytical study of our model is rather impractical, due to its level of complexity,

we numerically solve the equations (10)–(12) of the model using the biologically plausible ranges of
parameter values given in Table 1. Thereby, we make observations on the evolutionary impacts of
phenotype-optimal dispersal on adaptation, phenotype variation, and range evolution of a species.
In all except one of our numerical studies we consider a one-dimensional continuous habitat with
linearly changing environmental optimum phenotype. Our only study in a two-dimensional habitat
aims to investigate the effects of phenotype-optimal dispersal in presence of habitat fragmentation.
We use the same numerical scheme as we used in our previous work to solve the equations of our
model. The details of the numerical scheme used to compute the solutions are given in Appendix B.

Adaptive Range Expansion Dynamics

To demonstrate general effects of phenotype-optimal dispersal on the range dynamics and trait
variations of a species, we perform two closely related simulations. In one of the simulations
we only consider random dispersal, that means we set A = 0 X2/T. In the other simulation we
additionally include strong optimal dispersal, by setting A = 10 X2/T. The other parameters of the
model remain the same in both simulations. Other than the trait optimum Q, which is considered
to be linearly increasing over Ω, the rest of the parameters are assumed to be constant. We consider
a one-dimensional habitat Ω = (−50 X, 50 X) ⊂ R with the reflecting boundary conditions (13). To
make the effects of optimal dispersal strong enough to be clearly visible in our graphs, we consider
a steep environmental gradient of dxQ = 1.5 Q/X. We initially introduce the species at the center
of the habitat with a density given as n(x, 0) = 0.5 sech(|x|/

√
2). We assume that the trait mean in

this initial population varies linearly in space, with the constant gradient of ∇xq(x, 0) = 0.6∇xQ.
We further assume that the initial population is perfectly adapted to the environment at the center,
q(0, 0) = Q(0), and has a constant trait variance of v(x, 0) = 1 Q2. The results of our simulations
over the computation time horizon of T = 40 T are shown in Figure 1.

In both cases, with and without optimal dispersal, the species’ population density initially
grows to an upper limit set by environment’s carrying capacity and level of competitive release.
Afterwards, the population expands its range in the form of a traveling wave. The populations trait
mean converges to the optimum trait, due to the adaptation caused both by natural selection and
by phenotype-optimal dispersal, when it exists. The population’s trait variance evolves a spatial
profile that is decreasing from core to edge of the population. The maximum trait variance at the
population core reaches a constant upper bound.

In the absence of optimal dispersal, significant maladaptation is observed in Figure 1a near the
edge of the population. This maladaptation is mainly caused by asymmetric core-to-edge random
gene flow, which decreases the trait mean below the optimum near the right edge and increases
it above the optimum near the left edge. At the core, population density is almost uniform and
hence gene flow is symmetric. This implies that random gene flow does not significantly affect
the trait mean at central locations and local adaptation is maintained by natural selection. Since
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Figure 1: Adaptive range dynamics of a species in a one-dimensional habitat with
steep environmental gradient. Here, m = 1, Q(x) is linear in x with a relatively steep gradient
of ∇xQ = 1.5; , Q/X, and A(x) is constant taking different values in panels (a) and (b). The rest of
the model parameters take their typical values given in Table 1. In each of the panels, evolution of
the population density n(x, t) is shown on the left, evolution of the trait mean q(x, t) is shown in
the middle, and evolution of the trait variance v(x, t) is shown on the right. Panel (a) shows the
range expansion dynamics of a species without optimal dispersal, A = 0 X2/T, whereas panel (b)
shows the range expansion dynamics of a species with strong optimal dispersal, A = 10 X2/T. In
all graphs, curves are shown at every 4 T, and the thick orange curves indicate the initial curves at
t = 0 T. In the insets of trait mean graphs, curves are shown at every 1 T. Arrows show the direction
of evolution in time. In each graph, a sample curve at t = 8 T is highlighted in red. Dashed lines
indicate the effective edges of the population at t = 8 T, associated with the inflection points on the
highlighted curve of population density. The solid black lines in the graphs of trait mean show the
environmental trait optimum Q. The curves of trait variance take large values outside the effective
range of species. Such values are not biologically meaningful as they do not occur within the range
of the species, and have been cut to smaller values for better visualization of the meaningful parts
of the graphs.

environmental gradient is steep and population is well-adapted to it at its core, random gene flow
from adjacent areas generates large phenotypic variations among central individuals. Near the
edges, however, trait mean fails to follow the steep gradient in the optimum trait. As a results,
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trait variance decreases from core to edge in parallel with the decrease in gradient of the trait mean.
Further descriptions on the profiles of trait mean and variance under random dispersal are available
in our previous work (Shirani and Miller, 2022: Sect. 4.1).

In the presence of strong phenotype-optimal dispersal, as Figure 1b shows, the traveling-wave-
based range expansion dynamics of the species remains generally similar to the random dispersal
case. Nevertheless, important differences can be observed. Comparing the the insets in the graphs
of trait mean in Figures 1a and 1b shows that phenotype-optimal dispersal significantly increases
the local adaptation rate of the population. Convergence to the environmental optimum at the
population’s core occurs in almost one generation time (ecological time-scale) with optimal dis-
persal, whereas same level of adaptation takes more than ten generations to occur in the absence
of optimal dispersal. The level of maladaptation at range margins is also substantially decreased
by the directed gene flow created by phenotype-optimal dispersal. These are all consistent with
the general predictions on the adaptive effects of matching habitat choice, as discussed in the In-
troduction section, and as predicted by inspecting the equations of our model. Importantly, by
comparing the curves of trait variance in Figures 1a and 1b, we also observe that the phenotypic
assortment resulting from the preferential movements under optimal dispersal significantly reduces
the trait variance within the population. Moreover, the curves of population density in Figures
1a and 1b show that the reinforced adaptation by optimal dispersal increases the overall range
expansion speed of the population, especially at earlier stages of the population’s establishment
in the habitat. The maximum population density, however, is not notably impacted by optimal
dispersal at the environmental gradient we simulated in Figure 1.

The pronounced effects of phenotype-optimal dispersal we observed in Figure 1 were obtained
at the environmental gradient ∇xQ = 1.5 Q/X. The steepness of a the environmental gradient is
in fact a key factor in determining whether or not phenotype-optimal dispersal will be sufficiently
consequential in a species’ range evolution. The perceived forced for optimal dispersal (9) is di-
rectly proportional to the (perceived) magnitude of the environmental gradient. Moreover, the
phenotypic potential (p−Q)/V in (9) is directly influenced by the level of phenotypic variation in
the population, which in turn can be substantially inflated by random gene flow under steep envi-
ronmental gradients. Estimates of realistic values for the slope of environmental optimum gradient
in nature, however, are not widely available in the literature—noting that our choices of units for
∇xQ requires joint measurements of optimal trait values, dispersal distance, and generation time.
Yet, based on some available data, in our previous work we discussed that a plausible range of
values for ∥∇xQ∥Rm can approximately be between 0 and 2 Q/X, (Shirani and Miller, 2022: Sect.
3.2). That means, the gradient ∇xQ = 1.5 Q/X we used for the results shown 1 is very steep;
possibly associated with long-range dispersal of birds over elevation gradients, as an example. In
supplementary Figure S2, we show our simulation results for a reasonably shallower environmen-
tal gradient of ∇xQ = 0.2 Q/X, which might be more typically observed in nature. We see that
phenotype-optimal dispersal does not significantly impact the species’s range dynamics in this case.

The phenotypic potential (p − Q)/V for optimal dispersal in (9) is stronger when phenotype
utilization variance V is smaller, that means when individuals are specialists. To see if phenotype-

22

DR
AF
T



optimal dispersal by specialist individuals can significantly influence the range dynamics when
environmental gradient is not very steep, we simulate our model with the relatively small value of
V = 1 Q2 under the typical gradient of ∇xQ = 0.2 Q/X. The results are shown in supplementary
Figure S3. We observe similar effects to those shown in Figure 1. That is, phenotype-optimal
dispersal facilitates local adaptation of specialists in ecological time-scales, reduces their average
maladaptation at range margins, and reduces their within-population trait variance. Unlike what
we observed in Figure 1, the population’s range expansion speed is not considerably increased
though. In the absence of optimal dispersal, we see in Figure S2a that the population density
rises significantly above K = 1 N/X. This is due to the population’s ecological release gained by
less-competitive specialists. However, phenotype-optimal dispersal limits the level of competitive
release, as it counteracts the effects of smaller phenotype utilization variance (less competition) by
significantly reducing phenotype variation within the population. Phenotypically close individuals
can still remain sufficiently competitive even when they are specialists and utilize less amount of
common resources. As a result, we see in Figure S2b that population density is still approximately
bounded by the carrying capacity K = 1 N/X when the specialist individuals disperse optimally.

To further investigate whether or not phenotype-optimal dispersal can have sufficiently conse-
quential impacts on a species’ range expansion dynamics, we repeat our simulations for different
magnitudes (slopes) of the environmental gradient, as well as different values of the phenotype
utilization variance. In each case, we consider three different levels of optimal dispersal propensity,
A = 0 X2/T (no optimal dispersal), A = 4 X2/T (medium optimal dispersal), and A = 10 X2/T
(strong optimal dispersal). We run each simulation for a sufficiently long period of time, so that
the initial transient states pass. We uses the computed curves near the end of each simulation
to measure approximate speed and amplitude (peak value) of the traveling waves of population
density, as well as maximum trait variance attained at the population’s center. The results are
shown in Figure 2.

The curves of wave amplitude versus environmental gradient shown in Figure 2a show that
the population density and chance of survival at extreme environmental gradients is drastically
increased when propensity for optimal dispersal is increased. Similarly, population’s expansion at
extremely steep gradients is much faster when the individuals disperse optimally. The intraspecific
trait variance is also controlled to much lower, and much more reasonable, levels by the assortment
effects of optimal dispersal at extreme gradients. Note that the relatively sharp decline in the ampli-
tude of the population density waves at extreme gradients is predominantly due to the phenotypic
load −S

2v in (10c) which increases as v increases with gradient. That is why significantly slower
decline in wave amplitude is observed when optimal dispersal is strong and effectively controls the
rise in trait variance to more moderate values.

The profound improvements to species’ range expansion capacity that we observe in Figure
2a in presence of phenotype-optimal dispersal come with an important caveat. Based on our
previous discussions on plausible ranges of values of environmental gradients (Shirani and Miller,
2022: Sect. 3.2), such improvements mainly occur at exceedingly steep gradients which are unlikely
to be biologically realistic. As the insets in the graphs of Figure 2a show, when the gradient in
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Figure 2: Effects of optimal dispersal on range expansion waves and maximum in-
traspecific trait variance of a species. Here, m = 1, and A(x) takes three different constant
values 0 X2/T, 4 X2/T, and 10 X2/T. The trait optimum Q(x) is linear in x, with variable gradient
in panel (a) and the constant gradient of ∇xQ = 0.2 Q/X in panel (b). The phenotype utilization
variance takes the constant value V = 4 Q2 in panel (a), and is variable in panel (b). The rest of
the model parameters take their typical values given in Table 1. In each panel, variations in the
speed of the traveling waves of population density are shown on the left, variations in the amplitude
of the traveling waves are shown in the middle, and variations in the maximum intraspecific trait
variance is shown on the right. Panel (a) shows the effects of different levels of optimal dispersal at
different magnitudes of the environmental gradient ∇xQ. Panel (b) shows the effects of different
levels of optimal dispersal at different values of the species’ phenotype utilization variance V.

trait optimum takes more reasonable values between 0 and 2 Q/X, the improvements are much
less pronounced. We observe sufficiently significant changes in the expansion speed only at steep
gradients greater than 1 Q/X. At more typically observed gradients below 1 Q/X, phenotype-optimal
dispersal still facilitates local adaptation and significantly reduces within-population trait variance,
but such impacts appear to be less consequential to population’s range expansion capacity.

In a typically shallow environmental gradient of ∇xQ = 1 Q/X, Figure 2b shows that phenotype-
optimal dispersal does not significantly increase range expansion speed, even when the phenotype
utilization variance in the population is small. In the absence of phenotype-optimal dispersal, that
is when A = 0 X2/T, the competitive release at small values of V results in significant increase in
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both population density and trait variance as V → 0. The directed gene flow created by optimal
dispersal, however, substantially depresses the effects of such competitive release. It controls the
level of increase in trait variance to much lower values. As a result, competition remains sufficiently
strong even though small values of V tend to release the individuals from competition. When
optimal dispersal propensity is very strong, that is A = 10 X2/T, the effect of competitive release
is fully depressed and the amplitude of population density waves remains close to the carrying
capacity K = 1 N/X for all values of V. When n is controlled to almost constant values, decreasing
V in the first (competition) term in (12f) to zero will vanish the effect of competition in inflating
trait variance. As a result, with strong optimal dispersal, steady-state trait variance will converge
to a value mainly controlled by random gene flow (term (12c) in our model) and mutation-section
balance (term −Sv2+U in (12f)). Since both U and the environmental gradient are relatively small
in Figure 2b, this value is relatively small. This explains the sharp decline we observe in the curves
of trait variance in Figure 2b as V → 0, both for A = 10 X2/T and for A = 4 X2/T.

We note that the curves of wave amplitude and trait variance in Figure 2 were computed
approximately, by running the simulations for sufficiently long time and measuring the (almost
steady) values of these quantities at the center of the population at the end of the simulation. These
curves can more accurately be computed by solving the equations of the spatially homogeneous
equilibrium of the model, similar to our computations in our previous work (Shirani and Miller,
2022: Sect. 4.2). Although we avoid repeating such analysis here, we give the resulting curves in
supplementary Figure S4. We observe very close agreement between the approximate curves shown
in Figure 2 and the more accurate ones shown in Figure S4.

Directed Gene Flow and Local Adaptation at Rang Margins

In previous section, we made general observations on the effects of phenotype-optimal dispersal
on local adaptation of the species, using curves of trait mean. Here, we take a closer look at how
the directed gene flow generated by optimal dispersal influences the overall asymmetric core-to-
edge gene flow and adaptation at range margins. We use equation of the trait mean (11) to see
how the mean adaptation rate, ∂tq, is affected by random and non-random (directed) components
of gene flow, particularly at range margins. The sum of the terms (11a) and (11b) presents the
contribution of random gene flow in determining the rate of change of trait mean, whereas the
sum of the terms (11c)–(11e) presents the contribution of directed gene flow. The sum of all terms
(11a)–(11e) determines how the trait mean is changed due to individuals’ dispersal, both random
and directed. We use the same simulation layout as we used for the range dynamics results shown
in Figure 1b, and the same solutions of the model we computed in there, to illustrate each of these
three contributions separately. The resulting curves, as the population expands its range over time,
is shown in Figure 3. Due to symmetry, the curves are shown only for the right half of the habitat.
Positive values in each curve at a point x imply that the corresponding component of gene flow
represented by the curve tends to increase the trait mean q at x. Oppositely, negative values imply
tendency to decrease q. Therefore, since the initial profile of trait mean at t = 0 T, as shown
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Random Gene Flow Directed Gene Flow Total Gene Flow 

Figure 3: Effects of gene flow on local adaption of a species. Contribution of random
gene flow to the rate of change of the trait mean, ∂tq, is shown on the left. The curves of this
graph are computed as the sum of the terms (11a) and (11b), which capture the effects of random
dispersal on ∂tq. In the middle, contribution of directed gene flow to ∂tq is shown. The directed
gene flow is generated by optimal dispersal and is computed as the sum of the terms (11c)–(11e).
Contribution of the total (net) gene flow to ∂tq, that is the sum of the curves shown in the middle
and the left graphs, is shown on the right. The graphs correspond to the same simulation of species’
range dynamics given in Figure 1b, that is, when ∇xQ = 1.5 Q/X and A = 10 X2/T. In all graphs,
the evolution of the computed curves are shown only on the right half of the habitat. The curves
extend symmetrically about the origin to the left half of the habitat. Moreover, the portion of
each curve that lies outside the effective range of the species, that means over the regions where
the population density is approximately zero, has been made transparent. In all graphs, curves are
shown at every 1 T. The descriptions of the highlighted curves, arrows, and dashed lines are the
same as those provided in Figure 1b.

in Figure 1b, is below the trait optimum Q over the right half of the habitat, positive values of
the curves imply adaptive effects (increasing q toward Q), and negative values imply maladaptive
effects.

As we saw in Figure 1b, convergence of q to Q at population’s core occurs approximately in
ecological time scales, due to the strong effect of phenotype-optimal dispersal at the steep gradient
∇xQ = 1.5 Q/X. This convergence can also be clearly observed in Figure 3. The rate of change
in q quickly approaches to zero at the core of the population after a couple of generations. At
range margins, however, Figure 1b shows that adaptation never occurs perfectly. The core-to-edge
random gene flow created by random dispersal is always maladaptive, whereas the directed gene
flow generated bt phenotype-optima dispersal is always adaptive. Importantly, the total gene flow
to range margins appears to be always adaptive, implying that phenotype-optimal dispersal not
only compensates for the maladaptive effects of random movements, but also reverses their effects
in local adaptation of marginal populations. Similar observations are made when we analyze the
adaptive/maladaptive effects of different components of gene flow associated with the simulation
results shown in supplementary Figure S3b, that is, when environmental gradient is shallow (∇xQ =
0.2 Q/X) but individuals are highly specialists (V = 1 Q2). The resulting curves are shown in
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(a) (b)

Figure 4: Effects of directed gene flow on local adaption of a species at the edge of its
range. Contribution of the total (net) gene flow to the rate of change of trait mean, ∂tq, at the
edge of the species’ range is shown in each graph, for two different values of A. In (a), the species’
phenotype utilization variance takes its typical value of V = 4 Q2, and the magnitude of ∇xQ is
made variable. In (b), the environmental gradient takes its typical value of ∇xQ = 0.2 Q/X, and V
is made variable. The rest of the model parameters take their typical values given in Table 1, with
m = 1. To obtain each data points of the graphs (a) and (b), the contribution of the total gene
flow is first computed for the right half of the species’ range, as the sum of all terms (11a)–(11e)
in (11). The graphs shown on the right of Figure 3 show samples of such results. At each value of
∇xQ in (a) and each value of V in (b), the simulations are performed for sufficiently long periods
of time so that the species’ range expansion dynamics reaches an approximate steady-state. The
value of the total gene flow contribution to ∂tq at the edge of the species’ range, obtained at the
end of each simulation, is then shown in graphs (a) and (b).

Figure S5. The difference in this case—possibly because of the complicated interaction between
the effects of optimal dispersal and competition—is that convergence at the core shows a small
overshooting dynamics, during which the curves of directed gene flow take negative values (but still
adaptive) to decrease the overshot q back to Q.

To further investigate if the adaptive effects of directed gene flow remain sufficiently significant
at shallower (more typical) environmental gradients or when individuals are non-specialist, we
repeat similar analysis as shown in Figures 3 and S5 for different slopes of the environmental
gradient and different values of V. The sample curves in Figure 3 show that the maximum adaptive
(or maladaptive) effects of directed (or random) gene flow occur at the edge of the population.
Therefore, we use the value of the total contribution of gene flow to ∂tq, computed at the edge of
the population, as our reference for measuring the significance of phenotype-optimal dispersal in
facilitating adaptation at range margins. The resulting curves are shown in Figure 4.

We see in Figure 4 that the total gene flow remains adaptive to the range margins, even when
environmental gradient is fairly shallow or individuals are generalists. This implies that phenotype-
optimal dispersal is quite effective in compensating for the maladpative effects of core-to-edge
random gene flow. Yet, the curves shown in Figure 4, along with our previous observations through

27

DR
AF
T



Figure 2, suggest that the adaption facilitated by phenotype-optimal dispersal at range margins is
sufficiently consequential to enhancing range expansion capacity of the population primarily when
environmental gradient is steep (slopes greater than 1 Q/X).

Range Dynamics Under Abrupt Climate Fluctuations

Rapid adaptation of individuals within the time span of a single generation, as facilitated by
adaptive dispersal strategies such as matching habitat choice, is predicted to be pivotal to survival
of a population under climate change, particularly when changes are sharp and frequent (Bonte
et al., 2012; Edelaar and Bolnick, 2019; Jacob et al., 2017; Nicolaus and Edelaar, 2018). To make
observations on how phenotype-optimal dispersal will affect the range dynamics of a species under
abrupt climatic changes, we simulate our model in a one-dimensional habitat with a linear trait
optimum of steep gradient ∇xQ = 1.5 Q/X, which periodically fluctuates up and down without
changing its gradient. For this, we initialize our simulation at t = 0 T with a relatively established
population at the center of the habitat. This initial population is obtained as the curves at t = 4 T
of a preliminary simulation similar to the one shown in Figure 1, with n(x, 0) = 0.8 sech(|x|/

√
2),

q(0, 0) = Q(0), ∇xq(x, 0) = 0.7∇xQ, and v(x, 0) = 1 Q2. The thick orange curves shown in Figure 5
indicate the initial populations. To simulate abrupt temporal fluctuations in the environment, we
uniformly shift up the line of trait optimum Q by a certain fluctuation amplitude at the beginning
of a fluctuation period, and then shift it back down by the same amplitude at the middle of the
period. We repeat these fluctuations periodically, starting at t = 0 T, with a relatively short period
of 2 T.

Figure 5a shows the simulation results for fluctuation amplitude of 5 Q, when dispersal is only
random, A = 0 X2/T. The high level of maladaptation that is abruptly induced in the population
at t = 0 T, when the optimum gradient is shifted up, quickly reduces the population density and its
expansion speed. Yet, directed natural selection acts on the large deviation of trait mean from the
trait optimum, and the population gradually adapts to the new environmental optimum. However,
since period of the fluctuations is relatively short, the population will not fully recover its peak
density before experiencing another abrupt change in the environment. The periodically repeated
loss-and-recovery dynamics of the population density eventually reaches a steady-state, at which
the peak population density fluctuates between a fixed high and a fixed low value as the populations
expands its range. The red and blue curves in Figure 5a show samples of population density profile
at such high and low extremes.

Strong phenotype-optimal dispersal, A = 10 X2/T, significantly enhances the range expansion
capacity of the population under the abrupt environmental fluctuations that we simulate here, by
increasing both the expansion speed and the peak population density. The results are shown in
Figure 5b. This is because the large phenotype-environment mismatch perceived by the individuals,
immediately after an abrupt shift in the optimum phenotype, creates a strong phenotypic potential
for the individuals to disperse to better-matching locations. As a result, the population can rapidly
adapt to the new environmental optimum when a change occurs, and hence it loses much less
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Figure 5: Range dynamics of a species under periodic abrupt fluctuations in the
environmental trait optimum. Here, m = 1, ∇xQ = 1.5 Q/X, and A takes different values in
each graph. The rest of the model parameters take their typical values given in Table 1. Graph
(a) shows range dynamics without optimal dispersal, that is A = 0 X2/T. Graph (b) shows range
dynamics with strong optimal dispersal, A = 10 X2/T. Graph (c) shows extinction of a species with
the typical value A = 4 X2/T due to high-amplitude environmental fluctuations. In all graphs, the
period of abrupt fluctuations in the trait optimum is 2 T. At the beginning of each period, the trait
optimum Q is shifted up by a preset fluctuation amplitude and remains at this value for the first
half of the period. Then, it is shifted down by the same amplitude to the initial value and remains
at this value for the second half of the period. The fluctuation amplitude is set equal to 5 Q in (a)
and (b), and equal to 9 Q in (c). The thick orange curves indicate the initial curves at t = 0 T and
arrows show the direction of evolution in time. In (a) and (b), curves are shown at every 1.5 T, and
two sample curves are highlighted at t = 20 T (in red) and t = 20.5 T (in blue). In (c), curves are
shown at 20 logarithmically distributed time samples, with the first curve after the initial curve
being shown at t = 0.1 T. A sample curve at t = 20 T is also highlighted in red.

of its density. However, in agreement with our observations in the previous studies described
above, the significant effects of optimal dispersal that we observe here are in the presence of a
steep environmental gradient of ∇xQ = 1.5 Q/X. In shallower (more typical) gradients, as the
supplementary Figure S6 shows, the effects are much less significant.

When the amplitude of the environmental fluctuations is exceedingly large, the density loss
due to the excessive level of maladaptation after each abrupt change will be too high to be fully
recovered by the adaptation that occurs afterwards. As a result, the population will not be able to
reach a persistent state and its density keeps decreasing due to the repeated changes in the environ-
ment. Eventually, the population becomes extinct. Figure 5c shows an example of such extinction
dynamics, when phenotype-optimal dispersal is still fairly strong, A = 4 X2/T, but environmental
fluctuations occur with a large amplitude of 9 Q. To see if phenotype-optimal dispersal increases
the chance of survival when amplitude of the fluctuations is large, we repeat our simulation associ-
ated with Figure 5 for different values of fluctuation amplitudes. For each value, we compute the
average value of the fluctuations in population density when it reaches a steady-state, and show it
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Figure 6: Steady-state mean population density of a species under periodic abrupt
fluctuations in the environmental trait optimum. Here, m = 1, ∇xQ = 1.5 Q/X, and A takes
different values in each graph. The same periodic abrupt fluctuations as described in Figure 5
is applied to the trait optimum Q, with the typical amplitude of 5 Q in (b) and (c) and variable
amplitude in (a). Except for S and R which are made variable in (b) and (c), respectively, the rest
of the model parameters take their typical values given in Table 1. At each value of the variable
parameter shown at the horizontal axis of each graph, the simulation is run for a sufficiently long
period of time so that the amplitude of the fluctuations in population density of the species reaches
a steady-state. The minimum and maximum values of such periodic fluctuations (peaks of the blue
and red curves as shown in Figures 5a and 5b) are calculated near the end of the simulation, and
their average value is shown by different markers for each value of A, along with an interpolated
solid line. In (a), the steady-state mean value of the population density is shown with respect to
changes in the amplitude of the abrupt fluctuations in Q. In (b), the steady-state mean value of
the population density is shown with respect to changes in the strength of stabilization selection,
S. In (c), the steady-state mean value of the population density is shown with respect to changes
in the maximum growth rate of the species, R.

in Figure 6a. We see that when the amplitude of the environmental fluctuations is not very large,
optimal dispersal does not significantly increase the sustained density of the population. At very
large fluctuation amplitudes, however, optimal dispersal can largely increase the survival chance of
the species.

Strong natural selection amplifies the effects of maladaptation induced by abrupt environmental
changes, as implied from the term S

2 (q −Q)2 in (10c). As a result, when S is large, the population
suffers from a greater density loss after each shift in the trait optimum. However, larger values of S
expedite adaptation to the new environment, due to (11f). To see how these contradicting effects of
stronger natural selection affect population density under environmental fluctuations, and whether
or not phenotype-optimal dispersal can be sufficiently advantageous to population survival, we
repeat the simulation associated with Figure 5 for different values of S and measure the steady-
state average value of the fluctuations in population density. The results are shown in Figure 6b.
In general, we see that stronger natural selection reduces the sustained population density under
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the abrupt fluctuations we simulated. When stabilizing section is weak, as we typically observe
in nature (Kingsolver et al., 2001), phenotype-optimal dispersal does not significantly increase
mean population density. However, under very strong stabilizing selection, we observe that the
population’s chance of survival is substantially increased if its individuals disperse optimally.

The maximum growth rate of the population is a key factor in accelerating population density
recovery following density losses caused by environmental changes. Slowly growing populations
will have lower chance of recovering their full density before suffering form another loss. To see
how this impacts the population survival, we repeat our simulations for different values of R and
show the steady-state average value of population density fluctuations in Figure 6c. We see that
slowly-growing populations maintain a significantly lower density under environmental fluctuations,
compared with the fast-growing populations. However, phenotype-optimal dispersal substantially
increases the survival chance of slowly-growing species. In particular, with the relatively large fluc-
tuation amplitude of 5 Q that we considered in our simulation, observe that a randomly dispersing
population becomes extinct when R takes a relatively low value of approximately 1 T−1, whereas a
population with strong optimal dispersal can persist with sufficiently large density. We note that,
with our choice of generation time as the unit of time T, the maximum intrinsic growth rate argued
to be a demographic invariant within some homogeneous taxonomic groups (Niel and Lebreton,
2005). In particular, a slow growth rate of R = 1 T−1 is observed in a variety of taxa such as birds,
sharks, and mammals (Dillingham et al., 2016; Niel and Lebreton, 2005; Shirani and Miller, 2022),
which are often sufficiently mobile to evolve optimal dispersal strategies.

Fragmented Habitat

In highly fragmented environments, the cost of randomly moving from one habitat patch to reach
another patch is particularly high. Nevertheless, optimal habitat selection can also be harder in
such environments as optimal detection of matching habitat patches can be substantially imperfect
and dispersal mortality can be higher (Cote et al., 2017). However, the enhanced local adaptation
facilitated by optimal dispersal can still be imagined to be sufficiently beneficial to compensate for
such costs. Therefore, it is argued that habitat choice behavior and adaptive dispersal strategies
should also be selected in fragmented landscapes, and might be essential for the persistence of
populations in such environments (Bonte et al., 2012; Cote et al., 2017). Here, we investigate
whether or not phenotype-optimal dispersal can be of particular importance to a population’s
adaptation and range expansion capacity when the available habitat is highly fragmented.

We consider a two-dimensional habitat Ω = (−50, 50)× (−50, 50), with a trait optimum profile
that changes linearly in x1−direction (horizontal axis) and is constant in x2−direction (vertical
axis). We set a relatively steep gradient of ∂x1Q = 1 Q/X in x1−direction. Since habitat loss
directly affects the carrying capacity of the environment (Baguette et al., 2013), we simulate habitat
fragmentation by setting a patchy profile for the carrying capacity parameter K(x). This profile is
shown in supplementary Figure S7, and its specific pattern can also be approximately seen through
the last frames (at t = 40 T) in Figure 7. If patch sizes are large in both directions, relative to
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the average (random) dispersal distance per generation, the range dynamics inside each patch is
expected to be similar to the continuous habitat cases we studied in previous cases. Therefore,
to make the effect of fragmentation sufficiently pronounced, we consider relatively narrow patches
of width 2 X—noting that the random dispersal coefficient D takes the typical value of 1I2 X2/T,
where I2 denotes the 2 × 2 identity matrix. We let the length of these rectangular patches take
values between 10 X and 15 X. On the right-half of the habitat, we layout the patches horizontally,
so that they are stretched in the direction of the environmental gradient. On the left-half of
the habitat, we layout the patches vertically to be stretched perpendicular to the environmental
gradient. We consider this specific layout to further observe if the alignments of the patches with
the environmental gradient can have a particular impact on the range expansion dynamics. We
arrange the rectangular patches side-by-side, with no gap between them. However, over each patch,
we smoothly decrease the value of K from 1 N/X2 at the patch center to 0.05 N/X2 at the patch
edge. This leaves fairly inhabitable regions of low carrying capacity between patch cores, as shown
in Figure S7. Finally, we make an exception for the size of the patch located at the center of the
habitat, and let it be sufficiently large. We initialize the population in this central patch, so that
it can get well-established before expanding through the highly fragmented areas.

Figure 7 shows the simulation results for a species with only randomly dispersing individuals
(upper panel) and for a species with phenotype-optimal dispersal (lower panel). To make compar-
ison with range expansion in a continuous habitat, we also perform the simulations with constant
carrying capacity of K = 1 N/X2 and indicate the leftmost and rightmost edges of the population by
blue bars in Figure 7. The population establishes itself in the central patch to its almost maximum
capacity of approximately 1 N/X2. However, it spreads over the fragmented regions with much
lower density. This is mainly due to a significant level of maladaptation that is maintained by the
homogenizing effect of random gene flow. Figure S8 shows the phenotype-environment mismatch
q −Q at the end of the simulations, when the mismatch has approximately reached a steady state
over the whole habitat. The steady-state level of mismatch is low at the center of the patches.
However, it increases rather sharply towards the edges. Since patches are relatively narrow, this
results in a relatively high level of overall maladaptation over a large area of the patches, and hence
significant loss in population density.

Phenotype-optimal dispersal facilitates faster adaptation to new patches and thereby enhances
the transient expansion dynamics of the population, as observed through the increased expansion
speed in the lower panel of Figure 7. However, we observe that optimal dispersal does not signifi-
cantly improves the steady-state level of adaptation (shown in Figure S8) and population density
within the patches. The maximum population density that we observe in patches of the fragmented
region at t = 40 T is approximately 0.45 N/X2 when A = 10 X2/T, which is only slightly larger than
the maximum density of 0.41 N/X2 observed when A = 0 X2/T. This is because, due to the narrow
widths of the patches, the directed gene flow created by phenotype-optimal dispersal is not suffi-
ciently strong to effectively compensate for the maladaptive core-to-edge random gene flow within
the patches.

Although with much lower density, Figure 7 shows that the population expands its range over
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Figure 7: Range expansion of a species in a fragmented two-dimensional habitat. Here,
m = 2, the environmental gradient along the x2-axis is zero, and the environmental gradient along
the x1-axis is ∂x1Q = 1 Q/X. Habitat fragmentation is simulated by considering a patchy profile for
the carrying capacity K, as shown in the supplementary Figure S7. Parameter A takes different
values for the results shown in the upper and lower panels. The rest of the parameters take their
typical values given in Table 1. Four frames of the spatial profile of the species’ population density
are shown in each panel as the species’ range evolves in time. The upper panel shows range
expansion of a species with no optimal dispersal, A = 0 X2/T, whereas the lower panel shows the
range expansion of a species with strong optimal dispersal, A = 10 X2/T. For comparison purposes,
the same simulations but with constant carrying capacity of K = 1 N/X2 are performed and the
leftmost and rightmost edges of the population are indicated by blue bars in each plot. It should also
be noted that the final (appropriate steady-steady) profile of the phenotype-environment mismatch
and trait variance at t = 40 T are also shown in supplementary Figures S8 and S9.

the fragmented habitat almost with the same speed as it does it over a continuous habitat. This
is implied by the locations of the blue bars in Figure 7, which also coincide with the leftmost and
rightmost edges of the population in the fragmented habitat. Importantly, we do not observe any
effects of phenotype-optimal dispersal that particularly enhance the range expansion capacity of
the population when a habitat is fragmented, compared with a continuous habitat case.

When dispersal is only random, the particular layout of the patches—horizontally arranged
on the right and vertically arranged on the left—does not result in any noticeable asymmetry in
population’s expansion to each side of the habitat. With phenotype-optimal dispersal, a relatively
small asymmetry can be observed. The maximum steady-state (t = 40 T) population density
at vertical patches is about 10 percent higher than the maximum density at horizontal patches.
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Slightly better adaptation and lower trait variance is also observed within vertical patches. This can
be explained by noting that the vertical patches in our simulation are stretched perpendicular to the
gradient of the trait optimum. Therefore, optimal movements in the direction of the environmental
gradient lead to a distribution of relatively close phenotypes along each of the vertical patches.
Knowing that the patches are also relatively narrow, the overall closeness of phenotypes decreases
the maladpative impacts of the random component of gene flow. As a result, population density
can grow to higher levels within vertical patches.

Similar to our observations in the continuous habitat, a major impact of phenotype-optimal
dispersal that we observe in the fragmented habitat is significant reduction in trait variation within
the patches. Figure S9 shows the final profiles of trait variance at t = 40 T. In the presence of a
steep environmental gradient, as we consider here, the reduced phenotypic variability within patches
results in substantial increase in variability among the patches. Although not included in our
model, it can be argued that this enhanced genetic differentiation between the patches contributes
to reproductive isolation between the local populations. Large genetic differences between the
patches can reduce the propensity of individuals to move between the patches, to avoid mating
with individuals in a genetically novel population (Benkman, 2017; Bolnick and Otto, 2013; Cote
et al., 2017; Garant et al., 2007). The reduced movements between the patches and reduced genetic
variation within the patches can then promote the evolution of assortative mating, which further
reinforces the reproductive isolation between the patches. This process can eventually lead to
sympatric speciation in the habitat (Berner and Thibert-Plante, 2015; Bolnick and Otto, 2013;
Edelaar and Bolnick, 2012; Garant et al., 2007; Lenormand, 2002; Nicolaus and Edelaar, 2018).

Discussion

Studies that identify and quantify the effects of adaptive dispersal strategies on the dynamics
of spatially structured populations are still inadequate for developing a deep understanding of the
evolution of these strategies. To contribute to such understanding, in the present work we developed
and studied a deterministic mean-field model of adaptive range evolution of a population whose
individuals can disperse optimally—by tracking the environmental gradient in a fitness-related
phenotypic trait and moving to locations which minimize their phenotype-environment mismatch.
In our model, the individuals’ perceived force for phenotype-optimal dispersal depends both on their
phenotype-environment mismatch and on the environmental gradient in trait optimum. Therefore,
our model differs from non-optimal habitat choice mechanisms (Scheiner et al., 2022), in which a
sufficiently strong phenotype-environment mismatch initiates dispersal of an individual to a new
(randomly chosen) habitat patch, regardless of the presence or absence of an environmental gradient.
The presence of an additional random-dispersal component in our model prevents the individuals
from getting stuck in (small) non-matching habitat regions of zero environmental gradient.

We aimed to develop mechanistic insights into the effects of phenotype-optimal dispersal on
joint evolution of the population density, trait mean, and trait variance. Thereby, we specifically
aimed to make observations on the extent by which optimal dispersal can enhance range expansion
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capacity and survival chance of a population. Importantly, through such observations we can
identify conditions under which such enhancements are sufficiently strong to potentially evoke the
evolution of the phenotype-optimal strategy.

Range Expansion

Our results confirm that sufficiently strong phenotype-optimal dispersal, or matching habitat choice
in general, facilitates rapid adaptation of the individuals (and the population) within a single gen-
eration. In particular, the directed gene flow created by optimal dispersal effectively compensates
for, or reverses, the swamping effects (migration load) of asymmetric core-to-edge random gene
flow at population’s range margins; see Figure 3. This enhances the population’s range expansion
capacity, both in continuous and in fragmented habitats. However, our results predict that the
increase in range expansion speed is sufficiently significant only when the environmental gradient is
steep; see Figure 2. The rapid adaptation caused by optimal dispersal also allows for faster growth
in population density during transient states of population establishment. However, in the absence
of environmental changes, we predict that the maximum density that the population can attain is
not significantly changed by the individual’s optimal dispersal strategy.

Genetic Swamping and Range Limit

Genetic swamping of peripheral populations by the asymmetric gene flow from central populations
can destabilize the migration-selection equilibrium at range margins and limit the species’ range.
This has been one of the longstanding hypotheses proposed for explaining existence of stable range
limits in the absence of dispersal limitations and gross environmental discontinuities (Haldane,
1956; Kirkpatrick and Barton, 1997; Lenormand, 2002; Mayr, 1963; Sexton et al., 2009). The
seminal work of Kirkpatrick and Barton (1997) has established the theoretical foundation of this
hypothesis. However, relaxing an unrealistic assumption on phenotypic variation (to be constant)
in Kirkpatrick and Barton’s model, the possibility of genetic swamping causing range limits has
been challenged (Barton, 2001; Shirani and Miller, 2022). A review of empirical studies that tested
the genetic swamping hypothesis has also identified little evidence for genetic swamping as a major
cause of range limits (Kottler et al., 2021). In particular, Kottler et al. have found limited support
for asymmetry in (total) center-to-edge gene flow, and very little evidence that such gene flow
reduces mean fitness in edge populations. Their results suggest that gene flow often has neutral or
positive effects on range edge populations.

In agreement with the observations made by Kottler et al., our results shown in Figures 3 and
4 predict that the total (net) gene flow to range margins has indeed positive (adaptive) effects on
peripheral populations, even with moderate levels of optimal dispersal and at shallow environmental
gradients. Therefore, our results confirm that genetic swamping is unlikely to be a major cause of
species range limits, especially when some level of phenotype-optimal or phenotypically-directed
dispersal is present in the population. Moreover, our results suggest phenotype-dependent habitat
choice as a possible reason for the absence of significant asymmetry in center-to-edge gene flow in
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the empirical studies reviewed by Kottler et al..

Environmental Changes and Species’ Persistence

The significant enhancement of a species’ ability to rapidly adapt to new environmental conditions
is a key consequence of phenotype-optimal dispersal. It is mostly effective during transitions in
the state of the population, for example, when the population is introduced to a new habitat,
or when it responds to a temporal change in the environment. In particular, our results predict
that phenotype-optimal dispersal can remarkably increase population density, range expansion
speed, and chance of survival when changes in the environment occur sharply (within a fraction of
the generation time of the species) and frequently (in every generation or couple of generations).
The improvements are more substantial when natural selection is strong or fluctuations in the
environmental trait optimum have large amplitudes. Slowly growing species, such as birds and
mammals, can specifically benefit from such improvements. Without evolving rapid adaptation
abilities, such species cannot recover sufficiently fast from their population density loss due to a
sharp change in the environment. If changes occur frequently, they can eventually lead to species’
extinction.

Phenotypic Variation, Competition, and Speciation

Phenotype-optimal dispersal has crucial impacts on the level of intraspecific phenotype variations,
which can have consequences beyond adaption and range evolution of the species. Our results con-
firm that the spatial assortment of optimally dispersing individuals, based on the matching between
their phenotype and the environment, substantially reduces within-population trait variance. This
reduction in trait variation is a self-stabilizing (self-restricting) effect of phenotype-optimal disper-
sal. Stronger optimal dispersal propensity results in lower levels of phenotypic variation within the
population. However, reduced variation implies lower average of phenotype-environment mismatch
in the population, and hence less average phenotypic potential to disperse optimally. Furthermore,
reduced phenotypic variation increases the level of competition between the individuals. This im-
poses a higher competition (settlement) cost on the evolution of optimal dispersal, and depresses
the effects of competitive release caused by other ecological factors.

In metapopulations living in fragmented habitats, the reduced within-population trait variation
and enhanced local adaptation resulted from optimal dispersal increase the level of trait variation
between the local populations. Although not directly predicted by our model, the increased phe-
notypic divergence can drive reproductive isolation, reduce dispersal between the patches, promote
assortative mating, and contribute to sympatric or parapatric speciation (Benkman, 2017; Berner
and Thibert-Plante, 2015; Bolnick and Otto, 2013; Cote et al., 2017; Edelaar and Bolnick, 2012,
2019; Garant et al., 2007; Lenormand, 2002; Nicolaus and Edelaar, 2018). For example, phenotype-
dependent native habitat preference has been identified as the factor promoting the sharp genetic
divergence observed between parapatric populations of three-spined stickleback, which live in ad-
joining lake and stream habitats with significantly reduced dispersal between the habitats (Bolnick
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et al., 2009; Edelaar and Bolnick, 2012).

Infrequency of Phenotype-optimal Dispersal

Currently available evidence for matching habitat choice strategies is fairly limited. The reason
is partly because this mode of adaptation has been largely overlooked due to the major focus on
natural selection (Edelaar and Bolnick, 2019). However, it can be argued that matching habitat
choice is often insufficiently consequential to be detected, or is insufficiently beneficial to evolve—
considering its potentially high cost of evolution. In fact, the evolution of matching habitat choice
in a population can be inhibited by several factors, such as, high cost of the evolution of the
dispersal trait, individuals’ difficulty in obtaining accurate information about their performance
and matching habitats, dependence of adaptation on multiple uncorrelated traits, and movement
restrictions imposed by strong territoriality (Edelaar et al., 2017; Nicolaus and Edelaar, 2018).
Moreover, studies on joint evolution of different adaptation modes using individual-based models,
although (inevitably) not very realistic, have suggested that although matching habitat choice can
have a greater adaptive potential than plasticity or natural selection (Nicolaus and Edelaar, 2018),
it evolves less commonly than phenotypic plasticity (Edelaar et al., 2017), and is usually less favored
than habitat construction (Scheiner et al., 2022).

Our results predict that a steep environmental gradient in trait optimum is necessary for
phenotype-optimal dispersal to be sufficiently consequential on adaptation and range expansion
of a species. Specifically, we observed strong effects for gradients greater than 1 Q/X in magnitude,
that is, when trait optimum changes by more than one standard deviation per (1/

√
2 times) root

mean square of (undirected) dispersal distance in one generation time. Although such a steep gra-
dient can be plausible, it is estimated to be much steeper than the gradient that the majority of
species in nature typically experience (Shirani and Miller, 2022). We should also note that we did
not directly include any dispersal costs (except for indirect cost caused by increased competition)
in our study. Inclusion of the dispersal costs is therefore expected to make optimal dispersal even
less beneficial to evolve in non-steep environments. Additionally, our discussion above predict that
phenotype-optimal dispersal should be more prevalent among slowly growing species which are ex-
posed to sharp, strong, and frequent changes in their environment. Nomadic birds (Benkman, 2017)
and long-range dispersing mammals such as walruses, seals, sea lions, cougars, jaguars, elephants,
buffaloes, moose, rhinoceros, hippopotamuses, giraffes, and wolves can be examples of species that
may benefit from evolving phenotype-optimal dispersal. Microorganisms that live in high chemical
or temporal gradients may also optimally move to better matching environment through taxis.

Detection of the Phenotype-optimal Dispersal

Dispersal with matching habitat choice strategies is often hard to detect in nature. Local adaptation
and genetic differentiation between populations are evolutionary effects of optimal dispersal that
can also be caused by—and are often attributed to—strong natural selection. Local adaptation
can also be effectively facilitated by phenotypic plasticity. It is usually not very straightforward
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to evaluate which mode of adaptation has resulted in an observed pattern of local adaptation.
Therefore, observational and experimental approaches for detecting phenotype-optimal dispersal
should look for specific factors that can distinguish this mode of adaptation from the other modes.
The key feature of phenotype-optimal dispersal, that is directed movement in the direction of
the environmental gradient, is one of such important factors. The directed (non-random) gene
flow created by such movements can be tested by several complementary techniques (Edelaar and
Bolnick, 2012: Box 2). Our results particularly suggest two key considerations: (i) the impacts
of gene flow on the fitness of individuals should specifically be measured at population’s range
margins, and (ii) the maximum level of trait variation should be measured at the core of the
population. As we discussed before, phenotype-optimal dispersal results in adaptive gene flow to
range margins, which is otherwise expected to be maladpative when dispersal is predominantly
random. Moreover, phenotype-optimal dispersal can reduce trait variation to strikingly low levels
that are unlikely to be maintained by realistically strong selection. We should also note that high
range expansion speed and persistence capability under strongly changing environments, especially
in slowly growing species with high mobility, can serve as preliminary indications for possible
existence of optimal dispersal strategies.

Experimental approaches to test for the non-random gene flow directed by phenotype-optimal
dispersal can be particularly insightful. In such approaches, the individuals’ trait (performance)
or the environmental characteristics that affect the optimum trait can be manipulated, and then
possible directed dispersal can be tested as a response. Or, the individuals can be artificially
displaced to known habitat conditions, and then their subsequent phenotype-dependent movement
can be observed. (Edelaar and Bolnick, 2012). Nevertheless, we note that microcosms (Jacob
et al., 2017) or microclimatic mosaic arenas (Karpestam et al., 2012) that are usually constructed
in experiments to observe directed dispersal behaviors can artificially induce steep environmental
gradients that are unlikely to be present in the natural habitat of the model species. Since our
results identifies steep environmental gradient as a key factor in evolution of matching habitat
choice strategies, a direct comparison of the environmental gradient between the experimental and
natural habitats should be performed before making predictions on natural dispersal behaviors
based on the experimentally observed behaviors.

Conclusion

The fact that an environmental gradient is necessary for habitat choice strategies to take place is
trivial: without a gradient all habitat locations look the same to the individuals. However, our
results particularly predict that the gradient must indeed be very steep to make phenotype-optimal
dispersal sufficiently beneficial. This can serve as an explanation for why optimal dispersal is not
very prevalent in nature. Yet, we should note that our estimates of typical values for steepness
of environmental gradients are based on limited data. This is because environmental gradients
are hard to measure, and the available measurements are often based on different choices of units
which make steepness comparisons rather impossible. Our particular choices of units can provide
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sufficient generality for future measurements, based on which better estimates for typical steepness
of gradients can be obtained.

Phenotypic adaptation to a heterogeneous environment can occur through several modes, in-
cluding habitat choice, selection, and phenotypic plasticity. How strong are each of these modes
relative to the others, how they interact, and under what conditions they are more favored are ques-
tions that are not yet fully addressed (Edelaar and Bolnick, 2019; Edelaar et al., 2017; Scheiner
et al., 2022). We included phenotype-optimal dispersal and selection in our model. We observed
that strong optimal dispersal tends to reduce trait variation relatively fast, leaving less “fuel” for
selection to operate. When a population experiences a sharp change in the environment, it suffers
from a strong selective load. We observed that optimal dispersal is quite effective in mitigating
the effects of this load and facilitating rapid recovery. This implies that, in rapidly changing envi-
ronments, selection can indeed increase the potential for evolution of optimal dispersal. Detailed
analysis of the interactions between these modes, possibly including other modes such as plasticity,
can be an important direction of future research.

Our results confirm that phenotype-optimal dispersal can significantly contribute to genetic dif-
ferentiation and speciation. Therefore—when sufficiently steep environmental gradient is present—
we suggest that conservation efforts for protecting or promoting biodiversity plan for assisting the
evolution of phenotype-optimal dispersal, possibly by constructing corridors or stepping stones
aligned with the direction of the gradient.

Finally, our results emphasize the importance of intraspecific trait variation in adaptation, indi-
viduals interactions, and dispersal (Bolnick et al., 2011), and hence its necessity to be incorporated
in models of range evolution. By doing so in our mode, we could specifically make observations on
the interactions between the level of trait variation and the strength of phenotype-optimal dispersal,
and confirm important consequences of optimal dispersal on population differentiation.

Appendix A: Perceived Environmental Gradient

The perceived gradient partially defined in (8) over a smaller habitat Ωδ requires certain technical
considerations near the boundary of the habitat so that it can be extended to the whole habitat
Ω. To include such extension, we assume that the individuals of the species are able to perceive
the boundary of the habitat once they become sufficiently close to it (closer than the constant δ),
and they avoid crossing the boundary. That means, we assume that the normal component of ∇̃xQ
to the boundary of Ω is zero. Over a neighborhood of with δ around the boundary, we smoothly
extend the ∇̃xQ as defined by (8) so that its normal component to the boundary gradually vanishes
to zero. As a result, the extended ∇̃xQ will be tangential to the boundary of Ω. For this, we first
define the following cut-off function

χδ(y) =

exp
(

y2

y2−δ2

)
, |y| < δ

0, |y| ≥ δ
(15)

which smoothly declines from 1 at y = 0 to 0 at |y| = δ.

39

DR
AF
T



Now, for a rectangular habitat Ω = (a1, b1)× · · · × (am, bm), we extend (8) as

∇̃xQ(x) := Π
Π + ∥∇xQ(x)∥Rm

(
∇xQ(x)−

m∑
i=1

χδ(xi − ai)∂+xi
Q(x|ai)êi

−
m∑
i=1

χδ(xi − bi)∂−xi
Q(x|bi)êi

)
, x ∈ Ω. (16)

where êi denotes the ith standard unit vector in Rm, and x|ci := (x1, . . . , ci, . . . , xm) = x−(xi−ci)êi.
Moreover, ∂+xi

Q(z) and ∂−xi
Q(z) denote, respectively, the right-hand and left-hand partial derivatives

of Q with respect to xi evaluated at a point z. The summation terms in (16) gradually remove
the normal component of ∇xQ to the boundaries xi = ai and xi = bi, over a δ-neighborhood of
the boundaries, so that ∇̃xQ(x) eventually becomes completely tangent to the entire boundary of
Ω. The removal of the normal components of the perceived gradient ∇̃xQ(x) to habitat boundary
automatically results in no phenotypic flux through the boundary due to the directed dispersal
term (1b). Therefore, the no-flux (reflecting) boundary conditions that we discussed in Remark 1
and Appendix A.5 of our previous work (Shirani and Miller, 2022) can also be applied to the model
(10)–(12) we present in this work. If a periodic boundary condition is considered across the jth
spatial direction, then the terms associated with i = j are excluded from the summation terms in
(16). This is because imposing periodic boundary condition in a spatial direction is equivalent to
considering a habitat that is periodically extended in that direction.

For the one-dimensional habitats Ω = (a, b) used in the results presented in Figures 1–6, the
perceived environmental gradient (16) can be written as

∇̃xQ(x) := Π
Π + ∥∇xQ(x)∥R

(
∇xQ(x)− χδ(x− a)d+xQ(a)− χδ(x− b)d−xQ(b)

)
, x ∈ Ω. (17)

where d+xQ(z) and d−xQ(z) denote, respectively, the right-hand and left-hand derivatives of Q with
respect to x evaluated at a point z. Note that ∥∇xQ(x)∥R = |dxQ(x)|.

For the two-dimensional habitat Ω = (a1, b1)× (a2, b2) used in the results presented in Figure 7,
we considered reflecting boundary conditions at x1 = a1 and x1 = b1, and periodic boundary
condition across the x2-axis. Therefore, the perceived environmental gradient for this problem can
be written as

∇̃xQ(x) := Π
Π + ∥∇xQ(x)∥R2

(
∇xQ(x)− χδ(x1 − a1)

[
∂+x1Q

(
(a1, x2)

)
0

]

− χδ(x1 − b1)
[
∂−x1Q

(
(b1, x2)

)
0

])
, x ∈ Ω. (18)

In all of the simulations presented in this work, we set the maximum perceived gradient to be
Π = 1 Q/X, and we assume the individuals can sense the habitat boundary at a distance smaller
than or equal to δ = 2 X.
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Appendix B: Model Derivation

We use the basic equation (1) to derive the equations of our model (10)–(12). As constructing
components of the basic equation (1), we use the intrinsic growth rate (5), the perceived dispersal
force (9), and the rate of mutational changes ∂(M)

t φ given by Equation (20) in our previous work
(Shirani and Miller, 2022). Our derivation relies on the major assumptions (i)–(viii) provided in
the Model Assumptions section.

The basic equation (1) that we use to derive the equations of our model differs from the the
Equation (25) in our previous work (Shirani and Miller, 2022) only in the inclusion of the optimal
dispersal term (1b). As a result, applying the following derivation steps to the rest of the terms,
(1a), (1c), and (1d), will give the terms (10a), (10c), (11a), (11b), (11e), (11f), and (12a)–(12c),
whose derivation can be obtained as a single-species version of our general multi-species model
presented in our previous work; see, for example, the Equation (12)–(14) given in that work for a
one-dimensional habitat. Therefore, we exclude the derivation of these terms from this work and
refer the reader to our previous work. In the following, we show the derivation of the new terms
(10b), (11c)–(11e), (12d) and (12e) that model the effects of optimal dispersal.

We first substitute (9) into the basic equation (1) to write

n(t+ τ)φ(t+ τ, p)− n(t)φ(t, p) = −τ div
(
An(t)φ(t, p)p−Q

V ∇̃xQ
)
+ . . . , (19)

where “. . . ” denotes the terms we have excluded from our derivation, as stated above. Note that,
for simplicity of exposition, in writing (19) and the rest of the derivations that follow, we do not
explicitly show the dependence of the variables and parameters on x.

Now, we integrate both sides of (19) with respect to p over R to obtain

n(t+ τ)− n(t) = −τ div
(
An(t)q(t)−Q

V ∇̃xQ
)
+ . . . . (20)

Dividing both sides of (20) by τ and taking the limit as τ → 0 yields (10).
To derive (11), we multiply both sides of (19) by p and integrate the result with respect to p

over R. Noting that
∫
R p

2φ(t, p)dp = v(t) + q2(t), we obtain

n(t+ τ)q(t+ τ)− n(t)q(t) = −τ div
(
An(t)v(t) + q2(t)− q(t)Q

V ∇̃xQ
)
+ . . . .

which, after dividing by τ and taking the limit as τ → 0, gives

∂t(n(t)q(t)) = −div
(
An(t)v(t) + q2(t)− q(t)Q

V ∇̃xQ
)
+ . . . . (21)

Now, we use the chain rule on the left-hand side of (21) and substitute (10) into the result to obtain

∂tq(t) =
1
n(t)

[
−div

(
An(t)v(t) + q2(t)− q(t)Q

V ∇̃xQ
)

+ q(t) div
(
An(t)q(t)−Q

V ∇̃xQ
)]

+ . . . . (22)

41

DR
AF
T



Denoting the first term within the brackets in (22) by [(22).1st], we can write

[(22).1st] :=− div
(
An(t)v(t) + q2(t)− q(t)Q

V ∇̃xQ
)

=− div
(
An(t)

q(t)
(
q(t)−Q

)
V ∇̃xQ

)
− div

(
An(t)v(t)V ∇̃xQ

)
=− q(t) div

(
An(t)q(t)−Q

V ∇̃xQ
)
−
〈
∇xq(t) , An(t)

q(t)−Q
V ∇̃xQ

〉
Rm

− n(t) div
(
A v(t)

V ∇̃xQ
)
−
〈
∇xn(t) , A

v(t)
V ∇̃xQ

〉
Rm

.

Now, we substitute the result into (22) for the first term within the brackets and obtain (11).
Finally, to derive (12), we multiply both sides of (19) by (p− q(t+ τ))2 and integrate the result

with respect to p over R. It yields

n(t+ τ)v(t+ τ) =
∫
R
(p− q(t+ τ))2

[
n(t)φ(t, p)− τ div

(
An(t)φ(t, p)p−Q

V ∇̃xQ
)]

dp+ . . .

=− τ
∫
R
p2 div

(
An(t)φ(t, p)p−Q

V ∇̃xQ
)
dp+ n(t)

∫
R
p2φ(t, p)dp

− n(t+ τ)q2(t+ τ) + . . .

=− τ div
(
An(t)3v(t)q(t) + q3(t)− v(t)Q− q2(t)Q

V ∇̃xQ
)
+ n(t)v(t)

−
(
n(t+ τ)q2(t+ τ)− n(t)q2(t)

)
+ . . . .

Next, we divide both sides of the above equation by τ and take the limit as τ → 0. We obtain

∂t(n(t)v(t)) =− div
(
An(t)3v(t)q(t)− v(t)Q + q2(t)(q(t)−Q)

V ∇̃xQ
)

− ∂t
(
n(t)q2(t)

)
+ . . . . (23)

If we use the chain rule to write ∂t(n(t)v(t)) = n(t)∂tv(t) + v(t)∂tn(t), wherein ∂tn(t) is given by
(10), and split the divergence term in (23) into three terms, we can write

n(t)∂tv(t) = v(t) div
(
An(t)q(t)−Q

V ∇̃xQ
)

(24a)

− div
(
An(t)2v(t)q(t)V ∇̃xQ

)
(24b)

− div
(
An(t)v(t)(q(t)−Q)

V ∇̃xQ
)

(24c)

− div
(
An(t)q

2(t)(q(t)−Q)
V ∇̃xQ

)
(24d)

− ∂t
(
n(t)q2(t)

)
+ . . . . (24e)
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Now, for the terms (24b), (24d), and (24e), we have

(24b) =− 2n(t)q(t) div
(
A v(t)

V ∇̃xQ
)
− 2

〈
q(t)∇xn(t) , A

v(t)
V ∇̃xQ

〉
Rm

− 2
〈
n(t)∇xq(t) , A

v(t)
V ∇̃xQ

〉
Rm

, (25)

(24d) =− q2(t) div
(
An(t)q(t)−Q

V ∇̃xQ
)
− 2

〈
q(t)∇xq(t) , An(t)

q(t)−Q
V ∇̃xQ

〉
Rm

, (26)

(24e) = q2(t) div
(
An(t)q(t)−Q

V ∇̃xQ
)
+ 2n(t)q(t) div

(
A v(t)

V ∇̃xQ
)

+ 2
〈
q(t)∇xn(t) , A

v(t)
V ∇̃xQ

〉
Rm

+ 2
〈
q(t)∇xq(t) , An(t)

q(t)−Q
V ∇̃xQ

〉
Rm

. (27)

Moreover, denoting the right-hand side of (24a) by (24a).RHS, we can write

(24a).RHS = div
(
An(t)v(t)q(t)−Q

V ∇̃xQ
)
−
〈
∇xv(t) , An(t)

q(t)−Q
V ∇̃xQ

〉
Rm

. (28)

Substituting (25), (26), (27), and (28) into (24) and simplifying the result gives (12).
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