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Abstract
Overall balance of excitation and inhibition in cortical networks is central to their functionality and normal operation. Such 
orchestrated co-evolution of excitation and inhibition is established through convoluted local interactions between neurons, 
which are organized by specific network connectivity structures and are dynamically controlled by modulating synaptic 
activities. Therefore, identifying how such structural and physiological factors contribute to establishment of overall balance 
of excitation and inhibition is crucial in understanding the homeostatic plasticity mechanisms that regulate the balance. We 
use biologically plausible mathematical models to extensively study the effects of multiple key factors on overall balance of 
a network. We characterize a network’s baseline balanced state by certain functional properties, and demonstrate how varia-
tions in physiological and structural parameters of the network deviate this balance and, in particular, result in transitions in 
spontaneous activity of the network to high-amplitude slow oscillatory regimes. We show that deviations from the reference 
balanced state can be continuously quantified by measuring the ratio of mean excitatory to mean inhibitory synaptic con-
ductances in the network. Our results suggest that the commonly observed ratio of the number of inhibitory to the number 
of excitatory neurons in local cortical networks is almost optimal for their stability and excitability. Moreover, the values of 
inhibitory synaptic decay time constants and density of inhibitory-to-inhibitory network connectivity are critical to overall 
balance and stability of cortical networks. However, network stability in our results is sufficiently robust against modulations 
of synaptic quantal conductances, as required by their role in learning and memory. Our study based on extensive bifurcation 
analyses thus reveal the functional optimality and criticality of structural and physiological parameters in establishing the 
baseline operating state of local cortical networks.
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1  Introduction

Stability and excitability are essential properties of cortical 
networks that are established through complicated dynamic 
interactions between neurons. A cortical network of one 
cubic millimeter in volume in mammalian neocortex is 
composed of tens of thousands of neurons. Each of these 
neurons receive excitatory and inhibitory synaptic inputs 

from over a thousand other neurons, both through long-
range corticocortical fibers coming from neurons residing 
outside the network and through intracortical fibers coming 
from the neurons inside the network (Kandel et al. 2013; 
Shirani et al., 2017, Fig. 1). Within the network, neurons 
are highly interconnected via all types of excitatory-to-
excitatory, excitatory-to-inhibitory, inhibitory-to-excitatory 
and inhibitory-to-inhibitory connections. Such a massively 
interconnected network of dynamically interacting neurons 
must have intrinsic mechanisms to control the level of over-
all excitation and inhibition that is generated in the network 
at every instance of time. If the recurrent excitation provided 
by the population of excitatory neurons on itself—which 
is necessary for self-sustaining activity of the network—is 
not sufficiently balanced by the inhibition it receives from 
inhibitory neurons, then the overall level of excitation in 
the network can rapidly rise to an extreme level at which 
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the spiking rates of the neurons saturate. Oppositely, if the 
inhibitory neurons impose excessive inhibition on the excita-
tory population, the network loses the level of excitability 
that it needs to effectively respond to inputs coming from 
other cortical areas. Hence, maintaining an overall balance 
of excitation and inhibition is crucial for the functionality 
of a cortical network.

Theoretical and experimental studies have confirmed the 
existence of a dynamically regulated balance of excitation 
and inhibition in local cortical networks at multiple 
states of wakefulness and sleep (Haider et  al., 2006; Shu 
et al., 2003; Wehr & Zador, 2003; Okun & Lampl, 2008; 
Dehghani et al., 2016; Froemke, 2015; Yizhar et al., 2011; 
Vogels et al., 2011; Denève & Machens, 2016; Shadlen & 
Newsome, 1994; Vreeswijk & Sompolinsky, 1996; Shadlen & 
Newsome, 1998; Brunel, 2000; Brunel & Hakim, 1999; He & 
Cline, 2019; Gillary & Nieburm 2016; Shirani, 2020). It has 
been hypothesized that the balance of excitation and inhibition is 
essential for controlling network-level information transmission 
(Chen et al., 2022; Vogels & Abbott, 2009), efficient, high-
precision, and high-dimensional representations and processing 
of sensory information (Denève & Machens, 2016; Wehr 
& Zador, 2003; Vreeswijk & Sompolinsky, 1996), enabling 
cortical computations by enhancing the range of network 
sensitivity to sensory inputs (Froemke, 2015), selective 
amplification of specific activity patterns in unstructured 
inputs (Murphy and Miller, 2009), maintaining information in 
working memory (Lim & Goldman, 2013), and, importantly, 
preserving network stability (Nelson & Valakh, 2015; Vogels 
et al., 2011). Pathological conditions resulting in deviations from 
normal levels of excitation-inhibition balance, hence hypo- or 
hyper-excitation in cortical networks, have been associated 
with several neurological disorders, such as Autism Spectrum 
Disorders, schizophrenia, mood disorders, Alzheimer’s disease, 
Rett Syndrome, and epilepsy (Chen et  al.,  2022; Yizhar 
et al., 2011; Nelson & Valakh, 2015; Dehghani et al., 2016; 
Rubenstein & Merzenich, 2003; Palop et al., 2007; Palop & 
Mucke, 2016; Dani et al., 2005). Nevertheless, neuromodulatory 
mediated deviations from finely balanced network states, as 
long as they do not result in pathological dysfunction, are also 
thought to be important in enabling certain network operations, 
such as performing long-term changes in sensory receptive 
fields (Froemke, 2015; Yizhar et al., 2011; Rubenstein & 
Merzenich, 2003).

There is, however, a broad range of interpretations of 
excitation-inhibition balance in the literature. For instance, 
loose balance of excitation and inhibition in a network has 
been defined as a state during which temporal variations 
in excitatory and inhibitory input currents to neurons are 
correlated on a slow time scale, whereas on a faster time 
scale they exhibit uncorrelated fluctuations. When faster 
fluctuations are also strongly correlated, with possibly a 
small time lag between them, the balance has been called 

tight (Denève & Machens, 2016; Hennequin et al., 2017; 
Renart et al., 2010). From a related but mostly spatial point 
of view, global balance has been referred to a state at which 
each neuron of the network receives approximately equal 
amounts of excitation and inhibition, so that on average the 
overall levels of excitation and inhibition in the network 
are the same. The balance is called fine-scale or detailed 
when, in addition to having global balance, the amounts 
of excitation and inhibition to neurons also balance each 
other at finer spatial resolution, that is on subsets of synaptic 
inputs corresponding to specific signaling pathways (Vogels 
& Abbott, 2009; Froemke, 2015; Hennequin et al., 2017). 
The presence of such variety of interpretations has been an 
additional source of difficulty in developing techniques for 
experimentally measuring the excitation-inhibition balance 
in cortical networks and understanding its underlying  
regulatory mechanisms (He & Cline 2019).

Due to experimental complexities and interpretational 
ambiguities, it is still not well-understood how the excitation- 
inhibition balance is established, what cellular and network 
properties are homeostatically adjusted to maintain it, and 
how it can be accurately and meaningfully measured (He 
& Cline, 2019; Wu et al., 2020; Xue et al., 2014). Despite 
the challenges, however, numerous homeostatic mechanisms 
have been proposed as possible regulatory processes 
involved in maintaining the balance in cortical networks 
(Chen et al., 2022; Vogels et al., 2011; Wu et al., 2020; Ma 
et al., 2019; Le Roux et al., 2006; Hennequin et al., 2017; 
Sprekeler, 2017; Nelson & Valakh, 2015; Froemke, 2015; 
Turrigiano et al., 1998). Moreover, it is convincing that the 
balance is most likely established and regulated locally, that 
means through internal recurrent interactions within a local 
cortical network, as global interactions between different 
regions of the cortex are predominantly excitatory and 
cannot be effectively balanced at a global scale by short-
range activity of inhibitory neurons (Dehghani et al., 2016; 
Haider & McCormick, 2009; Denève & Machens, 2016; 
Shirani, 2020; Shirani et al., 2017).

The goal of this paper is to leverage the computational 
tractability of a biologically plausible mean-field model to 
perform an extensive study on how variations in some of the key 
physiological factors—that control the kinetics of synapses—and 
key structural factors—that determine the overall topology of 
a cortical network—affect the overall balance of excitation and 
inhibition in a local cortical network and potentially result in loss 
of stability and critical phase transitions in the dynamics of the 
network. Synaptic properties of a network can be dynamically 
adjusted through homeostatic plasticity mechanisms to 
compensate for changes in excitatory and inhibitory activity in 
the network, and thereby regulate the network balance. Structural 
organization of a network determines the types and amounts of 
interactions between neuronal populations, and hence is central 
to establishing the overall balance of activity in the network.  
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Hence, knowing how changes in each of the key synaptic and 
structural parameters of a network affect its overall balance, 
and whether or not such changes can create a critical state in 
the dynamics of the network, is important in understanding 
the homeostatic mechanisms that regulate the balance, and 
in identifying the sources of pathological conditions that may 
arise during cortical development or as a result of neurological 
diseases. We specifically demonstrate the effects of changes in 
physiological parameters such as synaptic decay time constants, 
synaptic quantal conductances, and synaptic reversal potentials, 
as well as structural parameters such as the ratio of the number of 
inhibitory neurons to the number of excitatory neurons, overall 
connectivity density of the network, and the density of inhibitory-
to-inhibitory connectivity. Performing such an extensive study 
experimentally is not practical, nor is it using biologically 
detailed neuronal network models, explaining our choice of 
a biologically plausible mean-field model in this study. The 
computationally affordable framework of our study allows for 
testing effects of fine modulations of a range of key parameters, 
providing predictions that can hint future experiments.

Our interpretation of a balanced state of excitation and 
inhibition is in the sense of its functionality. We characterize a 
balanced state as a network-level operational state that satisfies 
certain qualitative properties that are often reported in normally 
functioning networks. Specifically, we consider a (well-) 
balanced state as a state at which (1) the spontaneous activity 
of the neurons in the network are asynchronous and irregular, 
(2) the network is sufficiently excitable, (3) the spontaneous 
and stimulated activity in the network remain stable, and (4) 
the network responds rapidly to a reasonably wide range of 
external stimuli. We use the term “overall” balance to refer to 
such network-level balance, a term also alternatively used in the 
literature for global balance. The asynchronous and irregular 
network activity under this balanced state is commonly 
observed in globally and tightly balanced networks (Renart 
et al., 2010; Vogels & Abbott, 2009; Vogels et al., 2011; 
Markram et al., 2015; Denève & Machens, 2016; Dehghani 
et al., 2016; Brunel, 2000; Vreeswijk & Sompolinsky, 1996). 
The neurons in such balanced state are mostly expected to be 
depolarized near their spiking threshold (Haider et al., 2006; 
Landau et al., 2016).

We use the ratio of mean excitatory to mean inhibitory 
synaptic conductances to measure the level of balance in 
a network, which is a measure used effectively in some 
experimental studies (Haider et al., 2006) and its constancy 
under different conditions is considered as a signature 
of excitation-inhibition balance in a network (Denève 
& Machens, 2016). Our results show that this mean 
conductance ratio is a reliable measure to continuously 
quantify deviations from the balanced state—towards over-
excitation or over-inhibition—as it changes monotonically 
when the network balance is deviated from its reference 
value due to variations in the network parameters we study.

Our analysis is based on the biologically plausible 
mean-field model introduced by Carlu et al. (2020), with 
an additional neuronal adaptation mechanism proposed 
by di Volo et  al. (2019). This model, which has been 
developed in a sequence of works described by El Boustani 
and Destexhe (2009), Zerlaut et al. (2016, 2018), di Volo 
et al. (2019, and Carlu et al. (2020), has succeeded in fairly 
accurately predicting the mean spontaneous activity of 
neurons in a local cortical network during asynchronous 
irregular firing regimes, as well as their responses to certain 
external stimuli (Carlu et al., 2020; di Volo et al., 2019). We 
realistically characterize this model by setting the values of 
its biophysical parameters according to estimates obtained 
for cortical neurons of the mouse and rat brain (Teeter 
et al., 2018; Markram et al., 2015). As a result, the model 
presents a balanced state of excitation and inhibition with 
mean firing activity of the neurons being very close to that 
observed in biophysically detailed models of rat neocortical 
microcircuitry (Markram et al., 2015). We use the long-
term spontaneous mean-field activity predicted by this 
model, when driven by a constant rate of background input 
spikes, to make our observations on the level of balance 
in the network. The mean-field framework of the model 
allows us to employ standard numerical bifurcation analysis 
techniques to investigate how the overall (mean-field) 
balance of the network, established at baseline parameter 
values, is affected by continuous changes in each of the 
physiological and structural network parameters over a 
wide range of biologically plausible values. In particular, we 
observe that in most cases the parameter changes that result 
in over-excitation in the network can eventually become 
critical and lead to a phase transition in the network activity 
to a high-amplitude slow oscillatory bursting regime. 
We verify the key predictions of our mean-field-based 
analysis using a more detailed spiking neuronal network 
model. We also verify some of the key predictions of our 
analysis by making comparison with some experimental and 
computational results available in the literature on the rat 
somatosensory microcircuitry (Markram et al., 2015).

We organize this paper as follows. In Section  2, we 
provide an overview of our bifurcation and sensitivity 
analysis framework. In Section 3, we describe the details 
of the models we use to perform our analyses. In Section 4, 
we present the computational results we obtain based 
on the models. Finally, in Section 5, we summarize and 
discuss the key observations we make in our study. The 
results presented in Section 4 are modular. All bifurcation 
diagrams we obtain for different biophysical quantities of the 
network are included in a single figure, provided separately 
for each of the physiological and structural parameters we 
study. Therefore, an alternative quick read can be made by 
skipping the entire Section 4 at first and proceeding directly 
to  Section 5. The details for each of the key observations 
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summarized in Section 5 can then be found back in the 
corresponding figures and their descriptions provided in 
Section 4.

2 � Analysis methods

Our approach in studying the sensitivity of the overall 
balance of a network to continuous variations in network 
parameters relies on computing changes and phase transi-
tions in long-term mean-field activity of the network. In 
the absence of sensory or cognitive stimuli, the activity of 
a local cortical network in vivo is driven mainly by back-
ground spikes from neighboring cortical areas. However, the 
mean rate of such background input spikes is low. Therefore, 
the spontaneous activity of an unstimulated local network 
can be expected to be predominantly self-generated. Assum-
ing that the network is well-balanced, this spontaneous spik-
ing network activity is asynchronous and irregular. Assum-
ing further that the mean rate of background input spikes to 
the network is constant—which is a reasonable assumption 
we make in our analyses to be able to clearly distinguish the 
effects of parameter variations in our observations—then the 
mean spontaneous firing activity of the balanced network 
reaches quickly to a steady-state. Therefore, measuring the 
steady-state mean-field activity of the network, driven by a 
constant rate of background spikes, provides good estimates 
for measuring the overall balance of excitation and inhibition 
in the network.

We use a conductance-based mean-field model, whose 
details are described below in Section  3, to compute 
approximate mean-field activity of a local cortical network. 
We set the parameter values of this model equal to the realistic 
values estimated for cortical networks in the mouse and rat 
brain. We begin our analyses by first verifying that the model 
with these preset parameter values, when driven by a realistic 
rate of background input spikes, presents mean-field activity 
consistent with the activity observed in a well-balanced state—
as we described in our interpretation of overall balance in 
Section 1. We use the steady-state (equilibrium) mean-field 
activity computed at this state as a reference for balanced 
network activity. As our results show, the ratio of the mean 
excitatory to inhibitory synaptic conductances in the network is 
a reliable measure of overall balance in the network. Therefore, 
we use the value of this ratio, computed at the steady-state of 
the balanced network, as a reference for our quantification of 
deviations from the balanced state.

We employ numerical bifurcation analysis techniques 
to predict how the network balance is deviated from 
its reference state when we continuously vary the key 
physiological and structural parameters of the network. We 
individually study the effect of variations in each network 
parameters by considering it as a bifurcation parameter 

in a codimension-one continuation of the stable network 
equilibrium, that is the steady-state mean-field activity 
associated with the reference balanced state we described 
above. For each study, we demonstrate how the steady-
state values of important network quantities, such as mean 
neuronal firing rates, mean membrane conductances, 
mean membrane potentials, and mean synaptic currents 
change as the bifurcation parameter varies within its entire 
range of biologically plausible values. Moreover, when a 
phase transition to an oscillatory behavior is detected at a 
bifurcation point on the curves of equilibria, we additionally 
perform codimension-one continuation of the emerging 
limit cycles. This allows us to observe how the frequency 
of the oscillations changes with respect to variations in the 
bifurcation parameters. We perform our bifurcation analyses 
using MatCont, version 7.3 (Dhooge et  al., 2008), and 
individually report the results of each study in Section 4.

In our codimension-one analyses of the effects of syn-
aptic parameters, we only consider variations in inhibitory 
synaptic parameters. However, we additionally perform 
codimension-two continuation of the network equilibrium 
by simultaneously considering both excitatory and inhibitory 
synaptic parameters as bifurcation parameters. This allows 
us to observe how joint modulation of the kinetics of excita-
tory and inhibitory synaptic activity affects the overall bal-
ance of excitation and inhibition in the network. We perform 
similar analyses to also investigate certain joint contribution 
of synaptic and structural factors.

Although utilizing the simplicity of a mean-field model 
enables us to perform an extensive study on the effects of 
variations in multiple network parameters on the overall 
network balance, the generality of our observations can suffer 
from the inevitable simplifying assumptions of the mean-
field model construction. To address this concern, we also 
construct a spiking neuronal network model with equivalent 
structural, synaptic, and cellular parameters to those of the 
mean-field model. We then use this model to verify that 
the key predictions of our study based on the mean-field 
model still remain qualitatively valid when the simplifying 
assumptions of the mean-field description are removed. For 
this, we simulate the spiking neuronal network for different 
sets of parameter values based on the predictions of the mean-
field model, namely, for parameter values that correspond to 
the network’s reference balanced state with asynchronous 
and irregular neuronal firing activity, oscillatory bursting 
states, and states of non-oscillatory over-excitation or 
over-inhibition. We compare the results obtained from the 
two models using the same quantitative measures as those 
previously computed for the mean-field model.

Before presenting the results of our study, we provide 
below the detailed description of the mean-field and spiking 
neuronal network models, including the equations we use to 
compute the important descriptive quantities of the network.
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3 � Model description

Our computational study approach, as described above, relies 
on mathematical models whose detailed description, along with 
a discussion on the choice of their realistic parameter values, is 
provided below. The results we obtain based on these models 
are given in Section 4. Our key observations and their biologi-
cal implications are discussed in Section 5.

3.1 � Mean‑field neuronal population model

The mean-field model we use here has been developed based 
on the Markovian master equations provided by El Boustani 
and Destexhe (2009), which describe the overall activity of 
a randomly connected balanced network of neurons in an 
asynchronous irregular spiking regime. Specifically, these 
equations present the temporal evolution of the mean and 
variance of the firing rates of neurons within the excitatory 
and inhibitory populations of the network, as well as the 
covariance of the firing rates between the two populations. 
The master equations given by El Boustani and Destexhe 
(2009) have been extended by di Volo et al. (2019) by includ-
ing an additional equation that allows for spike frequency 
adaptation of the neurons.

Application of the master equations given by El Boustani 
and Destexhe (2009) requires developing neuronal transfer 
functions that characterize the stationary firing rate of 
neurons in response to their stationary presynaptic excitatory 
and inhibitory spiking activity. Such transfer functions 
provide population-level description of the neuronal  
activity and capture the specific properties of the single-
neuron models and synaptic interactions that are considered 
in building the mean-field model of the entire network. Due to 
the nonlinearities involved in incorporating such properties, 
analytical derivation of the transfer functions is often quite 
challenging. Here, as used by di Volo et al. (2019), we use  
the semi-analytically calculated transfer functions that 
are proposed by Zerlaut et  al. (2016) and Zerlaut et  al.  
(2018) under the assumption that the characterization of the 
transfer functions depends only on the statistical properties 
of subthreshold membrane potential fluctuations. These 
transfer functions rely on an effective membrane potential 
threshold for each excitatory and inhibitory population. 
This effective threshold is expressed as a second-degree 
polynomial on the moments of the subthreshold membrane 
potentials within each population, namely, on the mean, 
standard deviation, and autocorrelation time constant of 
the membrane potential fluctuations. The coefficients of 
this second-degree polynomial are obtained by fitting it 
to the dynamics of numerically simulated single neurons 
at different excitatory and inhibitory presynaptic spiking 
frequencies (di Volo et al., 2019; Zerlaut et al., 2016, 2018).

Below, we briefly provide the formulation of the mean-
field model as given by di Volo et al. (2019), with several 
notational changes, some modifications for incorporating 
external inputs to the network, and a correction on the equa-
tions governing neuronal adaptation.

3.1.1 � Mean‑field model equations

To present the equations of the mean-field model, let E and I 
denote, respectively, the excitatory and inhibitory neuronal 
populations of a local cortical network composed of a total 
number of N neurons. Note that N = NE + NI , where NE and 
NI denote the total number of excitatory and inhibitory neurons 
in the network, respectively. For all time t ∈ [0, T] , T > 0 , and 
population types X and Y , where X, Y ∈ {E, I} , the modeled 
neuronal activity is represented by the following variables:

•	 pX(t) , measured in Hz, denoting the mean firing rate of 
neurons in the X population at time t,

•	 qXY(t) , measured in Hz2 , denoting the covariance of the 
firing rates between the X and Y populations at time t,

•	 wX(t) , measured in pA, denoting the mean adaptation cur-
rent of neurons in the X population at time t,

•	 rExt
XY

(t) , measured in Hz, denoting the average rate of spikes 
received by neurons of X population at time t through each of 
the afferent fibers arriving from external neurons of type Y . 
Although in general some fraction of the afferent fibers can 
arrive from external inhibitory neurons, throughout this paper 
we assume all these external input spikes to the network are 
received only from excitatory neurons.

The system of differential equations that governs the time 
evolution of the state variables pX , qXY , and wX for a given 
external drive rExt

XY
 are provided by the master Eqs. (13)–(15) 

below. Note that qEI = qIE , hence it is sufficient to solve 
(13)–(15) only for one of these two quantities. As stated 
above, these master equations require calculation of the 
transfer functions that relate the firing rate of neurons in each 
population to their presynaptic excitatory and inhibitory 
spike rates. The conductance-based internal interactions that 
yield the derivation of these transfer functions are modeled 
as follows (Zerlaut et al., 2016, 2018; Carlu et al., 2020).

Let K Int
XY

 , with X, Y ∈ {E, I} , denote the average number of 
presynaptic connections that neurons within the X population 
in the network receive internally from the neurons of the Y 
population of the network. Similarly, let K Ext

XY
 denote the 

average number of presynaptic connections that neurons 
within the X population receive from external neurons of 
type Y residing outside the network. Then, the average 
number of presynaptic connections that neurons within the 
X population receive in total from both internal and external 
neurons of type Y is given as
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As stated above, throughout this paper we assume all external 
cortical connections to the local network under the study are of 
excitatory type, that is, K Ext

XI
= 0 , X ∈ {E, I} . Moreover, letting 

PXY denote the connection probabilities between neurons of X 
and Y populations, as described in Table 1, the average number 
of internal connections are given as

Next, let rXE and rXI denote, respectively, the average rate 
of excitatory and inhibitory presynaptic spikes that neurons 
in a population of type X receive both internally from other 
neurons within the network and externally from neurons 
residing outside the network. That is,

where the second equality for rXI is due to the assumption 
K Ext

XI
= 0.

(1)KXY ∶= K Int
XY

+ K Ext
XY

, X, Y ∈ {E, I}.

(2)K Int
XY

= PXYNY, X, Y ∈ {E, I}.

(3)

rXE

(
pE, pI, r

Ext
XE

)
=

1

KXE

[
K Int

XE
pE + K Ext

XE
r Ext
XE

]
, X ∈ {E, I},

(4)

rXI

(
pE, pI, r

Ext
XI

)
=

1

KXI

[
K Int

XI
pI + K Ext

XI
r Ext
XI

]
= pI, X ∈ {E, I},

The parameter G Leak
X

 in (7) denotes the leak 
conductance of the neurons. The parameters Q Syn

XY
 and 

�
Syn

XY
 in (5) and (6), with X, Y ∈ {E, I} , denote the quantal 

conductance and decay time constant of the synaptic 
connections, as described in Table 1. Note that these 
synaptic parameters correspond to the first-order model 
of synaptic conductance kinetics given by Eq. (18) below. 
Note also that neurons typically receive multiple synapses 
per single connection. The parameters Q Syn

XY
 in (5) and 

(6) denote synaptic quantal conductances per connection, 
and hence they are equal to the sum of the per-synapse 
quantal conductances generated by each of the synapses 
of a neuronal connection.

An approximation of the mean membrane potential of the X 
population based on the mean conductances calculated above 
has been provided by Kuhn et al. (2004) and Zerlaut et al. 
(2018) as

which can be roughly understood as a steady-state current law on 
the different currents flowing through the membrane of a neuron, 
with the neuron’s membrane potential and conductances being 
replaced with their mean values across the population. The param-
eters V Syn

E
 and V Syn

I
 denote the excitatory and inhibitory synap-

tic reversal potentials as described in Table 1. We assume these 
parameters do not depend on the type of the postsynaptic neurons.

The following approximations for the standard deviation 
SVX

 and a global autocorrelation time constant (approximate 
speed) TVX

 of membrane potential fluctuations have been 
obtained by Zerlaut et al. (2016) and Zerlaut et al. (2018) as

(7)

M
GX
(rXE, rXI) =MG

Syn
XE

(rXE, rXI)

+M
G

Syn
XI

(rXE, rXI)

+ G Leak
X

, X ∈ {E, I}.

(8)

M
VX
(rXE, rXI,wX) =

1

M
GX
(rXE, rXI)

[
V

Syn

E
M

G
Syn

XE

(rXE, rXI) + V
Syn

I
M

G
Syn

XI

(rXE, rXI)

+ V Leak
X

G Leak
X

− wX

]
, X ∈ {E, I},

(9)
S
VX
(r

XE
, r

XI
,w

X
) =

[ ∑
H∈{E,I}

K
XH
r
XH

[
𝜏
Syn

XH
Z
XH
(r

XE
, r

XI
,w

X
)
]2

2
[
𝜏 Mem
X

(rXE, rXI) + 𝜏
Syn

XH

]
] 1

2

,

X ∈ {E, I}

(10)

T
VX
(rXE, rXI,wX) =

∑
H∈{E,I} KXH

r
XH

�
�
Syn

XH
Z
XH
(r

XE
, r

XI
,w

X
)
�2

2S2
VX

(rXE, rXI,wX)
,

X ∈ {E, I}.

The train of spikes received by a neuron from its presynaptic 
neurons dynamically change the neuron’s membrane 
conductance. Let M

G
Syn
XE

 and M
G

Syn
XI

 denote, respectively, the mean 
value of the total excitatory and inhibitory synaptic conductances 
of a neuron of type X . Note that, throughout the paper, we will 
use MA and SA to denote the mappings that give the mean and 
standard deviation of the quantity A, respectively. The total 
excitatory (inhibitory) synaptic conductance of a neuron of type 
X is the conductance resulting cumulatively from all the synapses 
that are made on this neuron by other excitatory (inhibitory) 
neurons in the network. The effective value of these synaptic 
components depend on the rate of input spikes to the neurons. As 
proposed by Kuhn et al. (2004) and Zerlaut et al. (2018), the 
mean conductances can approximately be given as

which then allow for the calculation of MGX
 , the mean value 

of the total membrane conductance of the neurons within 
the X population, as

(5)M
G

Syn
XE

(rXE, rXI) = KXEQ
Syn

XE
�
Syn

XE
rXE, X ∈ {E, I},

(6)M
G

Syn
XI

(rXE, rXI) = KXIQ
Syn

XI
�
Syn

XI
rXI, X ∈ {E, I},
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Table 1   Cellular, synaptic, and structural parameters of the mean-field and spiking network models

∗The values of synaptic quantal conductances given here are quantal conductances per connection. These values are calculated using the esti-
mates provided by Markram et al. (2015) as follows: Q Syn

EE
= Q

Syn

IE
= 3 nS is approximately equal to the per-synapse excitatory quantal conduct-

ance of 0.85 nS times 3.6 synapses per excitatory connection, and Q Syn

EI
= Q

Syn

II
= 12 nS is approximately equal to the per-synapse inhibitory 

quantal conductance of 0.84 nS times 13.9 synapses per inhibitory connection

Parameter Description Value Unit

Cellular CMem
E

Membrane capacitance of the excitatory neurons 110 pF

CMem
I

Membrane capacitance of the inhibitory neurons 65 pF

G Leak
E

Leak conductance of the excitatory neurons 6 nS

G Leak
I

Leak conductance of the inhibitory neurons 5 nS

V Leak
E

Leak reversal potential of the excitatory neurons −75 mV

V Leak
I

Leak reversal potential of the inhibitory neurons −72 mV
�
wE

Adaptation time constant of the excitatory neurons 500 ms
�
wI

Adaptation time constant of the inhibitory neurons 500 ms
�E Subthreshold adaptation conductance of the excitatory neurons 4 nS
�I Subthreshold adaptation conductance of the inhibitory neurons 0 nS
�E Spike-triggered adaptation current increment of the excitatory neurons 60 pA
�I Spike-triggered adaptation current increment of the inhibitory neurons 0 pA

Synaptic V
Syn

E
Reversal potential of the excitatory synapses 0 mV

V
Syn

I
Reversal potential of the inhibitory synapses −80 mV

Q
Syn

EE
Quantal conductance of the excitatory-to-excitatory synaptic connections 3∗ nS

Q
Syn

IE
Quantal conductance of the excitatory-to-inhibitory synaptic connections 3∗ nS

Q
Syn

EI
Quantal conductance of the inhibitory-to-excitatory synaptic connections 12∗ nS

Q
Syn

II
Quantal conductance of the inhibitory-to-inhibitory synaptic connections 12∗ nS

�
Syn

EE
Decay time constant of the excitatory-to-excitatory synapses 1.7 ms

�
Syn

IE
Decay time constant of the excitatory-to-inhibitory synapses 1.7 ms

�
Syn

EI
Decay time constant of the inhibitory-to-excitatory synapses 8.3 ms

�
Syn

II
Decay time constant of the inhibitory-to-inhibitory synapses 8.3 ms

Structural NE Number of excitatory neurons in the network 8700 —
NI Number of inhibitory neurons in the network 1300 —
PEE Probability of excitatory-to-excitatory cortical connections 0.05 —
PIE Probability of excitatory-to-inhibitory cortical connections 0.05 —
PEI Probability of inhibitory-to-excitatory cortical connections 0.05 —
PII Probability of inhibitory-to-inhibitory cortical connections 0.05 —
K Ext

EE
Number of external excitatory connections made to excitatory neurons 1200 —

K Ext
IE

Number of external excitatory connections made to inhibitory neurons 1200 —

K Ext
EI

Number of external inhibitory connections made to excitatory neurons 0 —

K Ext
II

Number of external inhibitory connections made to inhibitory neurons 0 —

TMod Time scale of the mean-field model 20 ms
Spiking Network V Thr

E
Spiking threshold potential of the excitatory neurons −50 mV

V Thr
I

Spiking threshold potential of the inhibitory neurons −50 mV
ΛE Sharpness factor of the spike initiation term in AdEx model of excitatory neurons 2 mV
ΛI Sharpness factor of the spike initiation term in AdEx model of inhibitory neurons 0.5 mV
T Ref

E
Refractory period of the excitatory neurons 5 ms

T Ref
I

Refractory period of the inhibitory neurons 5 ms

N Ext
E

Number of external excitatory input channels 1000 —

P Ext
EE

Probability of connections between external input channels and excitatory neurons 0.05 —

P Ext
IE

Probability of connections between external input channels and inhibitory neurons 0.05 —
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where

and 𝜏 Mem
X

 denotes the effective membrane time constant of 
the X population, given by

The parameter CMem
X

 denotes the membrane capacitance 
of the neurons as described in Table 1.

The transfer functions FX of neurons within each popu-
lation X can now be characterized using the membrane 
potential moments MVX

 , SVX
 , and TVX

 given by (8), (9), and 
(10), respectively. For this, a semi-analytic form has been 
proposed by Zerlaut et al. (2016) as

where erfc is the complementary error function and 
T̃VX

∶= TVX
∕𝜏 Mem

X
 , with � Mem

X
∶= CMem

X
∕G Leak

X
 denoting 

the membrane time constant of the neurons of type X.
The effective membrane potential threshold �X in (11), 

which accounts for the nonlinearities in the neuronal 
dynamics, is expressed by di Volo et al. (2019) as the fol-
lowing second-degree polynomial

Z
XH
(r

XE
, r

XI
,w

X
) ∶=

Q
Syn

XH

M
GX
(r

XE
, r

XI
)

[
V

Syn

H
−M

VX
(r

XE
, r

XI
,w

X
)
]
,

X, H ∈ {E, I},

𝜏 Mem
X

∶=
CMem

X

MGX
(rXE, rXI)

, X ∈ {E, I}.

(11)FX(rXE, rXI,wX) =
1

2T
VX
(r

XE
, r

XI
,w

X
)
× erfc

⎛
⎜⎜⎝
𝛩

X(MVX
, S

VX
, T̃

VX
) −M

VX
(rXE, rXI,wX)√

2S
VX
(rXE, rXI,wX)

⎞
⎟⎟⎠
,

X ∈ {E, I},

(12)

𝛩X(MVX
, SVX

, T̃VX
) = 𝜃0

X
+
∑
A∈D

𝜃
(A)
X

(
A − A

ΔA

)

+
∑

(A,B)∈D2

𝜃
(A,B)
X

(
A − A

ΔA

)(
B − B

ΔB

)
,

where D ∶=
{
MVX

, SVX
, T̃VX

}
 and D2 ∶= (D ×D) ⧵

{(
S
V

X

,

M
V

X

)
,
(
T̃
V

X

,M
V

X

)
,
(
T̃
V

X

, S
V

X

)}
. The normalization param-

eters A and ΔA , A ∈ D , in (12) are not population type 
specific and their values are given in Table 2. It should be 
noted that some of these parameter values appear to be mis-
reported by di Volo et al. (2019). Here, we used their values 
as originally given by Zerlaut et al. (2016). The coefficients 
�0
X
 , �(A)

X
 , and �(A,B)

X
 , A ∈ D , (A,B) ∈ D

2 , are given in Table 3. 
They are calculated by di Volo et al. (2019) by fitting the 
effective thresholds and the resulting transfer functions to 
numerically calculated dynamics of adaptive exponential 
integrate and fire (AdEx) neurons. Note that the fit param-
eters in Table 3 are provided for both regular-spiking (RS) 
and fast-spiking (FS) neurons. Unless otherwise stated, we 
assume throughout this paper that all excitatory neurons are 
regular-spiking and all inhibitory neurons are fast-spiking.

Finally, calculation of the semi-analytic transfer functions 
(11) allows us to complete the presentation of the mean-field 

Table 2   Normalization 
parameters of the semi-analytic 
transfer functions (Zerlaut et al., 
2016)

Cell type M
VX

S
VX

T̃
VX

ΔM
VX

ΔS
VX

ΔT̃
VX

X = E, I −60 mV 4 mV 0.5 10 mV 6 mV 1

Table 3   Fit parameters of the semi-analytic transfer functions for populations of regular-spiking (RS) and fast-spiking (FS) neurons (di Volo 
et al., 2019)

Cell type �0
X �

(M
VX

)

X
�
(S

VX
)

X 𝜃
(T̃

VX
)

X
�
(M

VX
,M

VX
)

X
�
(S

VX
,S

VX
)

X 𝜃
(T̃

VX
,T̃

VX
)

X
�
(M

VX
,S

VX
)

X 𝜃
(M

VX
,T̃

VX
)

X
𝜃
(S

VX
,T̃

VX
)

X

X = E (RS) −49.8 5.06 −25 1.4 −0.41 10.5 −36 7.4 1.2 −40.7

X = I (FS) −51.4 4 −8.3 0.2 −0.5 1.4 −14.6 4.5 2.8 −15.3

model by providing the masters equations that govern the 
evolution of the population-level neuronal activity in the 
network. For X ∈ {E, I} , Y ∈ {E, I} , and t ∈ [0, T] , T > 0 , the 
equations are given as

(13)

TMod
dpX

dt
= FX(rXE, rXI,wX) − pX

+
1

2

∑
J∈{E,I}

∑
J�∈{E,I}

qJJ�

�2

�pJ�pJ�

FX(rXE, rXI,wX),
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where TMod is the modeling time scale of the Marko-
vian description of the network activity considered by El 
Boustani and Destexhe (2009), and �wX

 , �X , and �X are adap-
tation parameters of the neurons as described in Table 1. 
Moreover, �XY denotes the Kronecker delta function, that 
is, �XY = 1 if X = Y , and �XY = 0 if X ≠ Y . Note that, for 
simplicity of the exposition, the dependence of variables 
pX , qXY , and wX on t is not explicitly shown in (13)–(15). 
Moreover, note that rXY depends on the variables pE , pI and 
the external inputs r Ext

XY
 , as in (3) and (4).

Equations (13) and (14), which give the temporal evo-
lution of the mean and covariance of the firing rates have 
been developed by El Boustani and Destexhe (2009). 
The additional Eq. (15), which captures the dynamics 
of sub-threshold and spike-triggered neuronal adapta-
tion corresponding to the adaptation equation of a sin-
gle-neuron AdEx model (Brette & Gerstner, 2005), has 
been provided in the set of equations proposed by di Volo 
et al. (2019). Note that (15) includes a correction on the 
original equation (di Volo et al., 2019, Eq. (2.6)), as the 
original equation suffers from a unit mismatch between 
the physical quantities and does not correctly correspond 
to the adaptation equation of the network’s constitutive 
AdEx neurons.

We numerically solve (13)–(15) and analyze bifurca-
tions in the equilibrium solutions of these equations to 
obtain the solution curves and bifurcation diagrams pre-
sented in Section 4. The distinction between the dynam-
ics of the excitatory and inhibitory neuronal populations 
is made through inclusion or exclusion of the adaptation 
Eq. (15) and corresponding choice of the fit parameters 
given in Table 3. We consider all excitatory neurons to 
be regular-spiking, meaning that their dynamics under-
goes adaptation. Unless otherwise stated, we consider all 
inhibitory neurons to be fast-spiking, with no adaptation. 
Therefore, for the fast-spiking inhibitory population we 
set wI = 0 and exclude (15) for X = I from the numerical 
computations.

In the numerical analyses presented in Section 4, we also 
investigate dynamic variations in the mean value of the syn-
aptic currents flowing through the membrane of the neurons 
in each population. We use the approximate steady-state cur-
rent law (8) to derive the following approximations:

(14)

TMod
dqXY

dt
=
(
FX(rXE, rXI,wX) − pX

)(
FY(rYE, rYI,wY) − pY

)

+
∑

J∈{E,I}

[
qYJ

�

�p
J

FX(rXE, rXI,wX) + qXJ

�

�p
J

FY(rYE, rYI,wX)

]

− 2q
XY

+ �
XY

1

N
X

(
1

TMod
− F

Y
(r

YE
, r

YI
,w

X
)

)
F

X
(r

XE
, r

XI
,w

X
),

(15)

�wX

dwX

dt
= −wX + �wX

�XpX + �X
[
MVX

(rEE, rEI,wX) − V Leak
X

]
, for X ∈ E, I, where M

I
Syn
XE

 and M
I
Syn
XI

 denote the mean excita-
tory and inhibitory synaptic currents in the X population, 
respectively.

3.1.2 � Mean‑field model parameters

The description and value of the biophysical parameters of 
the mean-field model presented above are given in Table 1. 
The parameter values are chosen to be in the range of realis-
tic parameter values reported in the literature for the mouse 
and rat cortex. With these parameter values, which hereafter 
we refer to as baseline parameter values, the dynamics of the 
model shows a proper balance of excitation and inhibition 
wherein the mean firing rates of the excitatory and inhibitory 
populations closely coincide with those of the rat neocortex 
in an asynchronous irregular regime—as observed through 
both in vivo measurements and biophysically detailed in silico 
reconstruction of the rat neocortical microcircuitry (Markram 
et al., 2015). Correspondingly, we refer to this state of balanced 
activity in the network as baseline balanced state.

The values of the passive membrane parameters CMem
X

 , 
G Leak

X
 , and V Leak

X
 , X ∈ {E, I} , are chosen to be approximately 

equal to the median values given in Supplementary Table 2 of 
the work by Teeter et al. (2018), with the membrane leak con-
ductance being reciprocal to the membrane resistance given 
in there. The range of values provided by Teeter et al. (2018) 
are obtained by tuning the parameters of a family of general-
ized leaky integrate-and-fire models so that they reproduce 
the spiking activity of a large number of recorded neurons in 
the primary visual cortex of adult mouse. The associated neu-
ronal recordings are available in the Allen Cell Types Database 
(Allen Institute for Brain Science, 2016).

The values of the adaptation parameters �wE
 , �E , and �E given 

in Table 1 are equal to the values chosen by di Volo et al. (2019) 
for these parameters. These values are used by di Volo et al. 
(2019) in their calculations resulting in the fit parameters given 
in Table 3 for regular-spiking excitatory neurons. Note that, as 
assumed in the work of di Volo et al. (2019), we assume all inhib-
itory neurons in the baseline model are non-adapting. Moreover, 
note that the values of the adaption parameters chosen here are 
also comparable to the values provided by Brette and Gerstner 
(2005) by fitting an AdEx model to dynamics of a biophysically 
detailed conductance-based model of a regular-spiking neuron.

(16)
M

I
Syn
XE

(rXE, rXI,wX)

=
(
V

Syn

E
−MVX

(rXE, rXI,wX)
)
M

G
Syn
XE

(rXE, rXI),

(17)
M

I
Syn
XI

(rXE, rXI,wX)

=
(
V

Syn

I
−MVX

(rXE, rXI,wX)
)
M

G
Syn
XI

(rXE, rXI),
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The values of the synaptic reversal potentials given in 
Table 1 are fairly typical. We choose the baseline values 
for the other synaptic parameters to be equal to their mean 
values as given by Markram et al. (2015). The parameter 
values provided by Markram et al. (2015) are used for a 
detailed digital reconstruction of the juvenile rat somatosen-
sory microcircuitry as part of the Blue Brain Project (2005). 
Specifically, we set the values of � Syn

XY
 , X, Y ∈ {E, I} , equal 

to the values given in Table S6 of the work by Markram 
et al. (2015). For synaptic quantal conductances, however, 
an adjustment is made on the values provided by Markram 
et al. (2015). The average quantal conductance value of 0.85 
nS stated on Page 471 of the work by Markram et al. (2015) 
for excitatory synapses, and the average value of 0.84 nS 
stated for inhibitory synapses, are specified as per-synapse 
conductances. Whereas, as stated in the model description 
above, the parameters Q Syn

XY
 in the mean-field model we use 

here are associated with synaptic quantal conductances per 
connection. Therefore, to make adjustment for this differ-
ence, we scale the average quantal conductances provided by 
Markram et al. (2015) by the average number of synapses per 
connection. These scaling values are also provided on Page 
464 of the work by Markram et al. (2015), as 3.6 synapses per 
connection for excitatory connections and 13.9 synapses per 
connection for inhibitory neurons. The adjusted conductances 
are then given in Table 1 as values of QSyn

XY
 , X, Y ∈ {E, I}.

We consider a randomly connected network composed 
of a total number of N = 10000 neurons, out of which 
NE = 8700 neurons are excitatory and the remaining 
NI = 1300 are inhibitory. This relatively large size of the 
network allows for the mean field approximation described 
above, and is also comparable to the size of the neuronal 
populations in layers 2/3, 5, and 6 of the rat neocortical 
microcircuitry investigated by Markram et al. (2015). The 
87% excitatory versus 13% inhibitory proportions of the neu-
rons are chosen according to the overall estimates provided 
in Page 461 of the work by Markram et al. (2015).

Choosing the parameter values for internal and external con-
nectivity requires some considerations and simulation-based 
adjustments. The local connectivity density of neuronal net-
works varies across cortical regions and layers. Moreover, more 
than 80% of synapses in a local network of nearly 200 microm-
eter in diameter come from external neurons residing outside 
of the network (Markram et al., 2015; Stepanyants et al., 2009). 
As a result, it is estimated that when a slice of cortical tissue 
with a typical thickness of 300 micrometer is cut from the cor-
tex, only about 10% of excitatory synapses and about 38% of 
inhibitory synapses remain intact (Stepanyants et al., 2009). 
Therefore, the balance of excitation and inhibition in such cor-
tical slices is largely deviated toward over-inhibition. Taking 
these into account, we choose the connectivity parameters of 
the mean-field model so that the resulting network, driven by a 

biologically reasonable rate of background spikes from external 
neurons, presents a balance of excitation and inhibition with 
mean excitatory and inhibitory firing rates being consistent 
with those measured in a detailed digital reconstruction of the 
rat cortical microcircuitry in an asynchronous irregular spiking 
regime (Markram et al., 2015).

We set the connection probability of all types of internal 
network connections to be equal to 0.05. For excitatory-to-
excitatory connections, this value is quite comparable to the 
values reported in the literature for different cortical lay-
ers (Campagnola et al., 2022; Potjans & Diesmann, 2012; 
Markram et al., 2015). For other types of connections, this 
value appears to be almost half of the typical values esti-
mated experimentally. However, experimental estimations 
of neuronal connectivity are often obtained using cortical 
slices. Hence—due to the uneven reduction in the number 
of excitatory and inhibitory connections during slicing, as 
described above—using such estimates of inhibitory con-
nection probabilities for a structurally simplified network 
such as the one we consider here can potentially result in an 
over-inhibited network. Our preliminary simulations of the 
mean-field model with larger values of inhibitory connection 
probabilities shows an imbalance of activity as expected, 
with the model requiring excessive amount of external excit-
atory drive in order to produce a reasonable firing activity. 
Therefore, to achieve a reasonable balance of activity, we 
choose inhibitory connection probabilities smaller than the 
experimentally obtained estimates.

We assume neurons of the network do not receive any exter-
nal inhibitory inputs, whereas they each receive an average 
number of K Ext

EE
= K Ext

IE
= 1200 excitatory connections from 

external neurons. This number of external inputs is comparable 
with the estimates provided in Table 3 of the work by Potjans 
and Diesmann (2012). Moreover, with this number of external 
connections, along with the population size and internal con-
nection probability chosen above, each neuron receives more 
than 60% of its synapses from external neurons, a percentage 
comparable to the estimates given by Markram et al. (2015) 
and Stepanyants et al. (2009) as discussed above. Additionally, 
with the chosen number of external connections and internal 
connectivity, and with an average external (background) spik-
ing rate of r Ext

EE
= r Ext

IE
= 1 Hz , the numerical simulation of the 

model results in excitatory and inhibitory firing rates which are 
very close to those obtained in reconstructed rat microcircuitry 
(Markram et al., 2015). The details of the simulations are pro-
vided in Section 4.

Finally, note that in order for the Markovian assumption 
used in the derivation of the mean-field model to be valid, 
the time scale of the model, TMod , must be small enough so 
that neurons fire a maximum of one spike at each Markovian 
time step of length TMod , and must be large enough so that 
the network dynamics can be considered memoryless over the 
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timescale of TMod (Zerlaut et al., 2018; di Volo et al., 2019; 
Carlu et al., 2020). Here, we set the value of TMod to be approxi-
mately equal to the time constant of the neurons, as suggested 
by di Volo et al. (2019) and Carlu et al. (2020). This completes 
the discussion of the parameter values for the mean-field model. 
The rest of the parameters given at the bottom of Table 1 belong 
to the spiking network model described below.

3.2 � Spiking neuronal network model

We construct a network of randomly connected AdEx spik-
ing neurons, in direct correspondence to the mean-field 
description presented above. For this, first let NE ⊂ ℕ and 
NI ⊂ ℕ , such that NE ∩NI = ∅ , be two ordered sets that 
index neurons of the excitatory and inhibitory populations, 
respectively. Note that NE is of cardinality NE , and NI is of 
cardinality NI . The total number of neurons in the network is 
then indexed by the set N ∶= NE ∪NI . Also, let N Ext

E
⊂ ℕ , 

such that N Ext
E

∩N = ∅ , be an ordered set that indexes the 
external excitatory neurons that project onto at least one 
neuron inside the network. Note that, similar to the mean-
field description, we assume no external inhibitory inputs to 
the network. With n ∈ N  , the neuronal activity of the spik-
ing network is then represented by the following variables:

•	 vn(t) , measured in mV, denoting the membrane potential 
of the nth neuron at time t,

•	 wn(t) , measured in pA, denoting the adaptation current 
of the nth neuron at time t.

A neuron in the network fires a spike at a time t = t⋆ when its 
membrane potential exceeds its spiking threshold potential 
denoted by V Thr

n
 , that is when vn(t⋆) > V Thr

n
 . Let S t

n
 , n ∈ N  ,  

denote a set that stores all spike times of the nth neuron up 
to time t. Let, moreover, P t

m
 , m ∈ N

Ext
E

 , denote a set that 
stores all spike times of the mth excitatory external neuron 
up to time t. As described below, we assume these external 
spike times are Poisson-distributed.

Now, let gnm(t) denote the membrane synaptic conduct-
ance of the nth postsynaptic neuron generated through its 
synaptic connection with the mth presynaptic neuron. Let 
the set {cnm}n∈N,m∈N∪NExt

E

 capture the connectivity of the net-
work, including connections from external neurons, such 
that cnm = 1 if there is a connection from the mth neuron to 
the nth neuron, and cnm = 0 otherwise. Then, approximating 
kinetics of the synaptic conductance at each presynaptic 
spike time t⋆ by an instantaneous rise to a peak (quantal) 
conductance QSyn

nm
 followed by an exponential decay with 

time constant � Syn
nm  , the membrane synaptic conductances are 

given as

where H denotes the Heaviside step function and

Next, the total synaptic current I Synn  to the nth postsyn-
aptic neuron can be computed as a function of vn and t, by 
adding together all fractions of current coming from each 
individual synapse that the neuron receives. Let I Synn  be 
decomposed into its excitatory and inhibitory components 
as I Synn = I

Syn

n,E + I
Syn

n,I  . Then,

where V Syn
nm

 denotes the reversal potential of the synapse 
between the nth postsynaptic and mth presynaptic neurons 
when cnm = 1.

Finally, representing each neuron by an AdEx model 
(Brette & Gerstner, 2005), the subthreshold activity of the 
network is given by the following system of differential 
equations for all n ∈ N  and t ∈ [0, T] , T > 0,

The parameters CMem
n

 , G Leak
n

 , and V Leak
n

 in (21) denote the 
membrane capacitance, leak conductance, and leak reversal 
potential of the nth neuron, respectively. Moreover, V Thr

n
 and 

Λn denote, respectively, the spiking threshold potential of 
the nth neuron and its sharpness factor for spike initiation. 
The parameters �wn

 and �n in (22) denote the adaptation time 
constant and the subthreshold adaptation current of the nth 
neuron, respectively.

(18)

gnm(t) =

⎧
⎪⎨⎪⎩

∑
t⋆∈T t

nm
Q Syn

nm
exp

�
−
t − t⋆

𝜏
Syn
nm

�
H(t − t⋆) if cnm = 1,

0 if cnm = 0,

T
t

nm
=

⎧
⎪⎨⎪⎩

S
t

m
if c

nm
= 1 and m ∈ N,

P
t

m
if c

nm
= 1 and m ∈ N

Ext
E

∅ if c
nm

= 0.

(19)I
Syn

n,E (vn, t) =
∑

m∈NE∪N
Ext
E

gnm(t)
(
V Syn

nm
− vn

)
,

(20)I
Syn

n,I (vn, t) =
∑
m∈NI

gnm(t)
(
V Syn

nm
− vn

)
.

(21)

CMem
n

dvn

dt
= −G Leak

n

(
vn − V Leak

n

)

+ G Leak
n

Λn exp

(
vn − V Thr

n

Λn

)

− wn + I Syn
n

(vn, t),

(22)�wn

dwn

dt
= −wn + �n

(
vn − V Leak

n

)
.
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The spiking activity of the network is captured by per-
forming the following updates at each time instance t = t⋆ 
for all neurons that fire a spike at t = t⋆ , that is, for all 
n ∈ N  such that vn(t⋆) > V Thr

n
:

•	 vn is reset to the resting potential, denoted by VRest
n

 , and 
is kept at this value for a duration of time equal to the 
refractory period of the nth neuron, T Ref

n
,

•	 wn is incremented by a constant amount �n,
•	 t⋆ is added to the set S t

n
.

For the numerical analysis presented in Section 4, we set 
the parameters of all excitatory neurons and synapses, as 
well as all inhibitory neurons and synapses, to be the same 
and equal to the baseline parameter values given in Table 1. 
That is, for all n ∈ NX and X ∈ {E, I} , we set CMem

n
= CMem

X
 , 

G Leak
n

= G Leak
X

 , V Leak
n

= V Leak
X

 , �wn
= �wX

 , �n = �X , and 
�n = �X , in accordance with the baseline parameters used 
for the mean-field model. We also set the specific parameters 
of AdEx models as V Thr

n
= V Thr

X
 , Λn = ΛX , and T Ref

n
= T Ref

X
 , 

for all n ∈ NX and X ∈ {E, I} . Note that all inhibitory neurons 
are considered to be non-adapting, that is, �n = 0 and �n = 0 
for all n ∈ NI . Similarly, for all synapses of type Y-to-X , 
where X, Y ∈ {E, I} , that means for all n ∈ NX and m ∈ NY , 
we set Q Syn

nm
= Q

Syn

XY
 , � Syn

nm = �
Syn

XY
 , and V Syn

nm
= V

Syn

Y
 . Note 

that, similar to the mean-field model, we assume that the 
synaptic reversal potentials do not depend on the type of the 
postsynaptic neurons.

We generate the elements of the internal network connec-
tivity, {cnm}n∈N,m∈N  , using the same connection probabilities 
used for the mean-field model. That is, we set cnm = 1 with 
probability PXY , as given in Table  1, when n ∈ NX and 
m ∈ NY , with X, Y ∈ {E, I} . To set the elements of external 
connectivity, {cnm}n∈N,m∈N Ext

E

 , as well as the cardinality of 
N

Ext
E

 , denoted by N Ext
E

 , we first note that an in vivo network 
of size 10, 000 neurons can receive over 100, 000 afferent 
fibers from neurons outside of the network. The activities of 
the external neurons, however, are correlated. To lower the 
computational cost of simulating the network, and also to 
approximately take into account the correlation between 
external inputs, we assume that our spiking network receives 
input from only 1000, but independently spiking, input chan-
nels. That is, we set N Ext

E
= 1000 . These input channels are 

then randomly connected to the neurons inside the network 
with a connection probability of P Ext

XE
 , X ∈ {E, I} . Therefore, 

cnm = 1 with probability P Ext
XE

 when n ∈ NX and m ∈ N
Ext
E

 , 
with X ∈ {E, I}.

We assume that spikes in each external input channel arrive 
randomly at Poisson-distributed time instances. To be able to 
compare the activity of the two models, we adjust the rate of 
spiking in each channel so that the average excitatory drive to 
neurons of the spiking network model becomes equal to the 

average background drive to the neurons of the mean-field 
model. For this, note that each neuron of type X in the mean-
field model receives, on average, background inputs from K Ext

XE
 

external excitatory neurons, each firing at an average rate of r Ext
XE

 
spikes per second. Correspondingly, each neuron in the spiking 
network receives background inputs from an average number of 
1000 × P Ext

XE
 channels. If r Ext

EE
(t) is set equal, or linearly propor-

tional to r Ext
IE

(t) for all t ∈ [0, T] , then we can choose the values 
for P Ext

EE
 and P Ext

IE
 such that

The scaling factors K Ext
XE

∕(1000 P Ext
XE

) , X ∈ {E, I} , in (23) 
make the required adjustments on the external drive to the mean-
field model so that �(t) , as defined in (23), provides an equivalent 
drive to the spiking network. Therefore, we set the spike rate of 
each Poisson channel equal to �(t) . For the numerical analysis 
presented in Section 4, we set r Ext

EE
= r Ext

IE
 as in the mean-field 

model, and P Ext
EE

= P Ext
IE

= 0.05 as given in Table 1.

4 � Results

The mean-field model (13)–(15) and the spiking network 
model (21)–(22), with biophysical parameter values given 
in Table 1, are used here to investigate how the overall 
balance of excitation and inhibition in cortical networks 
is affected by variations in some of the important physi-
ological and structural factors of the network. We first 
show that the mean-field model with baseline parameter 
values is balanced with an activity rate typically observed 
in asynchronous irregular regimes, and is very responsive 
to changes in external inputs. We then perform the numeri-
cal analysis described in Section 2 and present how the 
network balance is affected by changes in key synaptic 
and structural parameters. We discuss the results and their 
biological implications in Section 5.

4.1 � The baseline balanced state

In order to investigate the effect of different synaptic and 
network parameters on the overall balance of excitation 
and inhibition, as described in next sections, it is important 
to first establish a reference balanced state for the network. 
Here, we demonstrate that the choice of baseline biophysi-
cal parameter values discussed in Section 3 results in 
a balanced state in the mean-field network activity, noting 
that our interpretation of the presence of overall balance 
in a network is based on observing the typical balanced 
network properties we described in Section 1. For this, 

(23)

K Ext
EE

1000 P Ext
EE

r Ext
EE

(t) =
K Ext

IE

1000 P Ext
IE

r Ext
IE

(t) =∶ �(t), for all t ∈ [0, T].
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we solve the mean-field Eqs. (13)–(15) with the baseline 
parameter values given in Table 1. The transfer functions 
used in (13)–(15) are given by (11), with their arguments 
being computed using (1)–(10), (12), and the fit param-
eters given in Tables 2 and 3. We drive the network with 
excitatory background inputs of constant mean frequency 
r Ext
EE

(t) = r Ext
IE

(t) = 1 Hz , which presents a background 
activity at a level typically observed in irregularly spik-
ing excitatory neurons at a cortical resting state (Markram 
et al., 2015).

Simulation of the mean-field model with the baseline 
setup described above identifies a stable equilibrium in the 
dynamics of the network, to which the mean-field activ-
ity of the network converges quickly. As we discussed in 
Section 1, computing the (mean) value of the important 
biophysical quantities of the network at this mean-field 
steady-state can provide a reasonably accurate estimate 
of the overall level of excitation and inhibition in the net-
work. At this steady state, the excitatory neurons of the 
baseline model fire at the mean rate pE = 1.15 Hz , and 
the inhibitory neurons fire at the mean rate pI = 5.71 Hz . 
These rates of activity are close to the average excitatory 
firing rate of 1.09 Hz and inhibitory firing rate of 6.00 Hz 
obtained in a detailed simulation of the rat neocortical 
microcircuitry, when the constructed network is present-
ing balanced activity in an asynchronous irregular regime 
(Markram et al. (2015), Fig. 17); see also Renart et al. 
(2010). Moreover, our simulation of the spiking neuronal 
network that we construct equivalently to the mean-field 
model, as described in Section 3, further confirms the 
presence of asynchronous irregular neuronal activity in 
the baseline model; see the rastergram shown in Fig. 11a.

It is shown in the literature that excitatory and inhibi-
tory synaptic conductances in the intact neocortex are 
well-balanced and proportional to each other (Haider 
et al., 2006). Using (5) and (6), the mean value of excita-
tory and inhibitory synaptic conductances at the mean-
field network equilibrium described above are calculated 
for the excitatory population as M

G
Syn
EE

= 8.7 nS and 
M

G
Syn
EI

= 37.0 nS , which are also equal to the values 
obtained for the inhibitory population. These mean con-
ductance values are comparable to the experimentally 
measured values provided by Haider et al. (2006). They 
give an excitatory to inhibitory mean conductance ratio of 
M

G
Syn
EE

∕M
G

Syn
EI

= 0.235 , which is consistent with the experi-
mental findings that imply inhibitory conductances are 
much larger than excitatory conductances (Rudolph 
et al., 2005; Le Roux et al., 2006; Haider et al., 2013). It 
should be noted that the significantly larger conductance 
ratios reported in some experimental works, such as the 
approximate ratio of 1 given by Haider et al. (2006), are 
most likely due to the deeply anesthetized preparation of 

such experiments, which is known to significantly affect 
the level of inhibition in cortical networks (Haider et al., 
2013). Therefore, in our analyzes provided in next sec-
tions, we consider the ratio M

G
Syn
EE

∕M
G

Syn
EI

= 0.235 as a refer-
ence for the steady-state value of the balanced conduct-
ance ratio—with respect to which we measure the level of 
deviations in the overall network balance towards more 
excitation (larger ratio) or more inhibition (smaller ratio).

Experimental observations suggest that the dynamic 
balance of excitation and inhibition in local cortical net-
works keeps the neurons of the network in a depolarized 
state near their firing threshold, so that the network can 
be rapidly activated by external excitatory inputs and 
become involved in specific computational tasks (Haider 
et al., 2006; Landau et al., 2016). To ensure that the base-
line balanced state in the mean-field model indeed cor-
responds to such a state of highly responsive network 
activity, we simulate the model with the same baseline 
parameter values as before, but with different values for 
the constant mean frequency of the excitatory inputs, 
r Ext
EE

= r Ext
IE

 . The resulting steady-sate values for different 
descriptive biophysical quantities of the model, obtained at 
the stable equilibrium of the equations for each input fre-
quency value, are shown in Fig. 1. First, it can be seen in 
Fig. 1 that all biophysical quantities of the model, such as 
the mean firing rates, mean excitatory adaptation current, 
mean value and standard deviation of membrane poten-
tials, and mean synaptic conductances take biologically 
reasonable values as the input frequency varies over a wide 
ranges of values. Second, the variation profile of the mean 
firing rates pE and pI shown in Fig. 1a indicates that the 
overall activity of the neurons at the baseline background 
input frequency of 1 Hz, which is marked by dots in the 
graphs shown in Fig. 1, is indeed close to the firing thresh-
old of the neurons. Last, relatively sharp changes in the 
mean firing activity of the neurons in response to different 
levels of excitatory input stimuli indicates that the base-
line network is in a sufficiently responsive state. Moreo-
ver, although not shown here, our simulation results also 
verify that the mean-field dynamics of the network with 
baseline parameter values is sufficiently fast in responding 
to rapid fluctuations in the external inputs. A sample of the 
network firing response to fluctuations of approximate fre-
quency 10 Hz is shown in Fig. 10a. Such rapid responses 
are also observed to fluctuations as fast as 20 Hz.

The mean inhibitory activity in the model rises in paral-
lel to the mean excitatory activity as the mean frequency of 
external excitatory inputs increases to larger values beyond 
the background value. However, the results shown in Fig. 1 
imply that the neuronal interactions throughout the net-
work control the overall level of inhibition in the network 
at a level that still allows for an elevated level of overall 
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excitation—which is necessary for the network to be able to 
perform the processing task demanded by the external stim-
uli. This results in a change in the overall balance of exci-
tation and inhibition toward higher excitation, as observed 
through the increase in the ratio between mean excitatory 
and inhibitory synaptic conductances, shown in Fig. 1c. 
Nevertheless, the level of inhibition in the network remains 
sufficiently strong to prevent network instability and hyper-
activity when the network receives an excessive amount of 
excitatory inputs from other cortical regions.

The observations made above confirm that our mean-field 
model with the baseline parameter values and background 
external inputs of mean frequency 1 Hz represents a network 
at a well-balanced state of overall excitation and inhibition. 
At this state, the network stays in an asynchronous irregular 
regime and is highly responsive to external cortical inputs, 
without undergoing internal instabilities when the level of 
external excitation increases. Therefore, we choose this state 
as the baseline balanced state of the mean-field model, and 
use it as a reference state to study how such a balanced state 
is disturbed by changes in the values of physiological and 
structural parameters of the network.

4.2 � Synaptic contributors to the balance 
of excitation and inhibition

The kinetics of synaptic activity in the conductance-based 
model we use here is governed by three main physiologi-
cal factors, namely, synaptic decay time constants, synap-
tic quantal conductances, and synaptic reversal potentials. 
Variations in these physiological factors directly change the 
efficacy of synaptic communications between the neurons 
and hence have substantial impact on the dynamic balance 
of excitation and inhibition across the network. We investi-
gate such impacts by showing how the steady-state balance 
between excitatory and inhibitory synaptic conductances—
obtained at the stable equilibrium of the baseline mean-field 
activity described above—is affected by variations in each 
of these synaptic factors. In particular, we identify critical 
states of imbalanced activity which result in the loss of sta-
bility of the network equilibrium and lead to  transition of 
the network dynamics to an oscillatory regime.

The dynamics of the mean-field model (13)–(15) are 
highly dependent on the profiles of the transfer functions FE 
and FI , which can change significantly if the physiological 

Fig. 1   Steady-state mean-field activity with respect to variations in 
the mean frequency of the external inputs. All parameter values of 
the mean-field model are set to their baseline values given in Table 1. 
The model is driven by external inputs of different mean frequency 
r
Ext
EE

= r
Ext
IE

 , and the resulting steady-state values of different network 
quantities are shown in the graphs. The points marked by dots in the 
graphs correspond to the baseline mean input frequency of 1 Hz, 
which we considered as the level of background input to the mean-
field model. a Mean excitatory firing rate pE , mean inhibitory firing 
rate pI , ratio between the mean firing rates pE∕pI , and the mean excit-

atory adaptation current wE . b Excitatory membrane potential VE and 
inhibitory membrane potential VI of the neurons. Solid lines indicate 
the mean values M

VE
 and M

VI
 of the membrane potentials, and shaded 

areas indicate variations in the membrane potentials within a range 
of one-standard deviation ( S

VE
 and S

VI
 ) from the mean values. c Mean 

synaptic conductances M
G

Syn
EX

 , X ∈ {E, I} of the excitatory population, 
and the ratio between the two conductances. Mean synaptic conduct-
ances of the inhibitory population take the same values as those of 
the neurons of the excitatory population
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parameters of the synapses change. Hence, demonstrating 
the effects of variations in synaptic parameters on the profile 
of transfer functions (neuronal response curves) helps our 
understanding of how such variations affect the balance of 
mean-field activity in the network. Fig. 2 illustrates how neu-
ronal response curves vary with respect to changes in each of 
the three synaptic parameters we consider here. Variations in 
the decay time constants of inhibitory synapses, as shown in 
Fig. 2a, changes the gain (sensitivity) of both inhibitory and 
excitatory neurons by changing the slope of their response 
curves. Additionally, such variations also change the excit-
ability of the neurons by horizontally shifting their response 
curves. Similar effects are observed when the decay time con-
stants of excitatory neurons change, however, with changes 
in neuronal excitability being less pronounced in this case. 
Fig. 2b shows that changes in synaptic quantal conductances 
similarly affect gain and excitability of the neurons, with 
a higher sensitivity of the response curves being observed 
with respect to variations in excitatory quantal conduct-
ances. Changes in the synaptic reversal potentials, as shown 
in Fig. 2c, significantly alter the gain of the neurons but have 
a lesser impact on their excitability. Changes in the gain of 
the neurons when the excitatory synaptic reversal potentials 
are increased or decreased from their baseline values are pro-
nounced, and occur monotonically. However, gain changes 
with respect to variations in inhibitory reversal potentials 
appear to be non-monotonic. At lower output frequency 
values, both increasing V Syn

I
 above its baseline value, and 

decreasing it below its baseline value, result in an increase 
in the gain of the neurons.

Local inhibitory sub-networks are known to play a key 
role in stabilizing the dynamics of local networks and coor-
dinating the flow of activity across cortical areas (Isaacson 
& Scanziani, 2011; Froemke, 2015; Sprekeler, 2017; Haider 
& McCormick, 2009; Hennequin et al., 2017; Shadlen & 
Newsome, 1994). Therefore, in what follows, we initially 
perform our analysis based on codimension-one continua-
tion of the baseline equilibrium state with respect to vari-
ations in each of the inhibitory synaptic parameters. Then, 
we extend the analysis to codimension-two by additionally 
considering variations in excitatory synaptic parameters.

4.2.1 � Effect of synaptic decay time constants

The decay time constant of a synapse determines how long the 
activity initiated in the synapse by an incoming action potential 
(spike) will last. Hence, the decay time constant has a signifi-
cant impact on the efficacy of the synapse, which can also be 
directly implied from the mean synaptic conductance Eqs. (5) 
and (6). Moreover, changes in synaptic decay time constants 
also change the standard deviation and autocorrelation time 
constants of membrane potential fluctuations, as implied from 
Eqs. (9) and (10). As a result, the transfer functions (response 

curves) of neurons are highly impacted by variations in the 
decay time constants, which is confirmed by the results shown 
in Fig. 2a. To show how the decay time constants of the syn-
apses then impact the global dynamics of the network, and how 
they contribute to maintaining or disturbing the overall balance 
of excitation and inhibition, we first continue the stable equilib-
rium of the baseline balanced network with respect to variations 
in inhibitory decay time constants � Syn

EI
= �

Syn

II
 . The results are 

shown in Fig. 3.
The response curves given in Fig. 2a show that increasing 

the value of � Syn

EI
= �

Syn

II
 decreases the gain and excitability 

of inhibitory and excitatory neurons. As a result, the mean 
firing rates of both excitatory and inhibitory populations 
decrease, concurrently, with increasing � Syn

EI
= �

Syn

II
 , as 

shown in Fig. 3a. This paired variation in the mean firing 
activity of the populations, however, does not necessarily 
imply that the overall balance of excitation and inhibition 
remains unchanged with respect to changes in inhibitory 
decay time constants. The ratio of the mean excitatory to 
mean inhibitory synaptic conductances in the excitatory 
population, M

G
Syn
EE

∕M
G

Syn
EI

 , shown in Fig. 3b, implies that the 
excitation-inhibition balance moves toward over-inhibition 
as the efficacy of inhibitory synapses grows with increasing 
�
Syn

EI
= �

Syn

II
 . Indeed, unlike the profile of the inhibitory fir-

ing rate pI , at large values of � Syn

EI
= �

Syn

II
 the mean inhibi-

tory synaptic conductance M
G

Syn
EI

 shown in Fig. 3b rises 
slightly as � Syn

EI
= �

Syn

II
 increases. It should be noted that 

mean synaptic conductances in the inhibitory population, 
M

G
Syn
IE

 and M
G

Syn
II

 , which are not shown in Fig. 2a, take the 
same values as those in the excitatory population due to the 
same choices of connection probabilities in our model.

On the opposite direction, decreasing the value of inhibitory 
synaptic decay time constants increases the ratio M

G
Syn
EE

∕M
G

Syn
EI

 
and moves the excitation-inhibition balance toward more exci-
tation. The excessive excitation in the network then drives the 
network’s dynamics to a critical state, at which further reduc-
tion in � Syn

EI
= �

Syn

II
 results in an overall level of excitation that 

cannot be effectively balanced by the increased level of inhibi-
tion. At this critical state, the network’s dynamics undergoes 
a phase transition to an oscillatory state, identified by a Hopf 
bifurcation point in the codimension-one continuations shown 
in Fig. 3. The limit cycle originated from the Hopf bifurcation 
point has also been continued, and the curves of minimum and 
maximum values taken by different biophysical quantities of 
the model on the resulting cycles are shown in Fig. 3. When 
the inhibitory synaptic decay time constants decrease below 
the critical value � Syn

EI
= �

Syn

II
= 7.06 ms, which is the value 

at which the Hopf bifurcation occurs, the previously stable 
equilibrium of the model becomes unstable. As a result, the 
orbits of the system depart the vicinity of the equilibrium and 
converge to a stable limit cycle on the curves of cycles origi-
nated from the Hopf bifurcation. Fig. 3e shows that the stable 
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oscillations on this cycle lie in the delta frequency band (1 - 4 
Hz). Moreover, the results of the equivalent spiking neuronal 
network that we study in Section 4.5 imply that, when the  
emerging oscillations in firing rates on a limit cycle is of suf-
ficiently large amplitude, the network activity on the limit 
cycle corresponds to a slow oscillatory bursting regime; see 
the rastergram in Fig. 11b. Further details on the dynamics of 

such oscillatory network behavior are provided in Section 2 of 
the supplementary material (Online Resource).

It should be noted that further continuation of the curves 
of limit cycles, as partially shown in Fig. 3, detects a fold 
bifurcation of limit cycles and emergence of unstable limit 
cycles at low values of � Syn

EI
= �

Syn

II
 . However, analyzing the 

dynamics of the model at such values is not pertinent to the 

Fig. 2   Variations in the response curves of neurons as a result of 
changes in synaptic parameters. For all graphs, the mean inhibitory 
spike rates received by both populations are fixed at the typical value 
rEI = rII = 6 Hz . The mean excitatory spike rate received by each pop-
ulation is varied over a plausible range of values to obtain each neu-
ronal response curves FX , X ∈ {E, I} , which are calculated using (11) 
and the fit parameters given in Table 3. All parameter values involved 
in the calculation of FX , except those specified on each graph, take 
their baseline values as given in Table 1. Thick curves in each graph 
show the response curves obtained at baseline synaptic parameter 
values. Other curves in each graph illustrate variations in the shape 
of the response curves as a synaptic parameter changes. Arrows indi-
cate variations corresponding to 10 evenly distributed incremental 
changes in the parameter values specified in each graph. The color 
gradient used in each graph also indicates these incremental changes, 

with the darkest colored curve corresponding to the smallest value 
of the parameter, and the lightest colored curve corresponding to 
the largest value of the parameter. a  Response curves with respect 
to variations in inhibitory (shown on the left side of the panel) and 
excitatory (shown on the right side of the panel) synaptic decay time 
constants. The value of � Syn

EI
= �

Syn

II
 is varied from 5 ms to 18 ms, 

and the value of � Syn

IE
= �

Syn

EE
 is varied from 1 ms to 3 ms. b Response 

curves with respect to variations in inhibitory and excitatory synaptic 
quantal conductances. The value of Q Syn

EI
= Q

Syn

II
 is varied from 1 nS 

to 25 nS, and the value of Q Syn

IE
= Q

Syn

EE
 is varied from 1 nS to 8 nS. 

c Response curves with respect to variations in inhibitory and excita-
tory synaptic reversal potentials. The value of V Syn

I
 is varied from 

−103 mV to −53 mV, and the value of V Syn

E
 is varied from −30 mV 

to 20 mV
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purpose of this paper. In fact, at such values the mean-field 
model loses its validity in accurately predicting the emerging 
dynamic regimes, since the quantity under the square root in 
(9) approaches negative values. However, our results shown 
in Fig. S1 in the supplementary material (Online Resource), 
which are obtained using the spiking neuronal network, 

imply that the network still presents slow oscillatory burst-
ing activity at an extreme value of � Syn

EI
= �

Syn

II
= 3 ms, 

which is below the range of values shown in Fig. 3.
The results shown in Fig. 3d imply that the mean mem-

brane potential of both excitatory and inhibitory popula-
tions decreases with increases in the value of � Syn

EI
= �

Syn

II
 . 

Fig. 3   Effects of variations in synaptic decay time constants on the 
long-term mean-field activity of the network. All parameter val-
ues of the mean-field model, except for the synaptic decay time 
constants that are explicitly specified in each graph, are set to their 
baseline values given in Table 1. The model is driven by background 
inputs of constant mean frequency r Ext

EE
= r

Ext
IE

= 1 Hz . In graphs 
a–e, the decay time constants of inhibitory synapses made on neu-
rons of both excitatory and inhibitory populations are set to take the 
same value, which is varied as the bifurcation parameter. The result-
ing codimension-one continuation of the network equilibrium and 
emerging limit cycles are shown for different quantities. Curves of 
equilibria are shown by solid lines, and the minimum and maximum 
values that each quantity takes on the limit cycles are shown by dot-
ted lines. Dark-colored segments of each curve indicate stable equi-
libria/limit cycles, whereas light-colored segments indicate unstable 
equilibria/limit cycles. Unlabeled dots in each graph correspond to 
the baseline parameter values � Syn

EI
= �

Syn

II
= 8.3 ms . Points labeled 

by H are Hopf bifurcation points. We show bifurcation diagrams 
for a  mean excitatory firing rate pE and mean inhibitory firing rate 
pI , b mean synaptic conductances M

G
Syn
EX

 , X ∈ {E, I} , of the excitatory 
population, and the ratio between the two conductances, c  absolute 
value of the mean excitatory synaptic currents, |M

I
Syn
XE

| , X ∈ {E, I} , as 
well as the ratio between mean excitatory and inhibitory synaptic cur-
rents, and d  mean excitatory and inhibitory synaptic driving forces 
|M

vE
− V

Syn

X
| , X ∈ {E, I} , in the excitatory population, as well as such 

driving forces |M
vI
− V

Syn

X
| , X ∈ {E, I} , in the inhibitory population. 

e Frequency of the limit cycles originating from the Hopf bifurcation 
point. f Codimension-two continuation of the Hopf bifurcation point 
when the excitatory synaptic decay time constants are also allowed 
to vary as a bifurcation parameter. The point marked by a dot has the 
baseline excitatory parameter value of � Syn

EE
= �

Syn

IE
= 1.7 ms . Arrows 

indicate transition from stable (dark) to unstable (light) equilibria as 
the parameters are varied across the curve
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This means that, on average, neurons in the network become 
more hyperpolarized when the level of inhibition in the net-
work is enhanced by increasing the efficacy of the inhibitory 
synapses. Since in this study the values of synaptic reversal 
potentials are kept fixed, the reduction in the mean membrane 
potential of the neurons due to an increase in � Syn

EI
= �

Syn

II
 

yields a reduction in the mean electrochemical driving force 
of the inhibitory synapses in both populations, |MVX

− V
Syn

I
| , 

X ∈ {E, I} , and a rise in the mean driving force of the excita-
tory synapses, |MVX

− V
Syn

E
| , X ∈ {E, I} . The curves of the 

equilibrium driving forces shown in Fig. 3d illustrate such 
profiles of variations.

The absolute values of the mean synaptic currents at the 
equilibrium, calculated using (16) and (17), are shown in 
Fig. 3c. As discussed above and illustrated in Fig. 3b and d, 
the steady-state values of the two contributing components 
of these currents, the mean synaptic conductances and the 
mean synaptic driving forces, change in opposite directions 
with increases in � Syn

EI
= �

Syn

II
 . The combination of these two 

components, however, results in steady-state mean synaptic 
currents which decrease in absolute value as � Syn

EI
= �

Syn

II
 is 

increased, as we can see in the curves of equilibria shown 
in Fig. 3c; note that inhibitory currents are not shown sepa-
rately in Fig. 3c as their profile is similar to that of excitatory 
currents. In particular, despite the increase in mean driv-
ing forces of the excitatory synapses, the mean excitatory 
synaptic currents decrease as � Syn

EI
= �

Syn

II
 is increased. This 

implies that the effect of decreasing excitatory conductances, 
shown in Fig. 3b, dominates the effect of increasing mean 
excitatory driving forces, hence resulting in the net decrease 
of excitatory synaptic currents.

Fig. 3c also shows that the steady-state ratio between 
the absolute values of mean excitatory and mean inhibitory 
synaptic cur rents in the inhibitory population, 
|M

I
Syn
IE

|∕|M
I
Syn
II

| , does not significantly change with respect 
to � Syn

EI
= �

Syn

II
 , whereas the ratio between these currents 

in the excitatory population, |M
I
Syn
EE

|∕|M
I
Syn
EI

| , decreases with 
increasing � Syn

EI
= �

Syn

II
 . Therefore, similar to the ratio 

M
G

Syn
EE

∕M
G

Syn
EI

 between synaptic conductances, here the ratio 
|M

I
Syn
EE

|∕|M
I
Syn
EI

| between synaptic currents also indicates 
shifts in the level of excitation-inhibition balance, toward 
over-inhibition or over-excitation.

The results provided above describe only the effect of 
inhibitory synaptic decay time constants on the network 
balance. Nevertheless, the excitation-inhibition balance in 
the network can also be affected by changes in the excita-
tory synaptic decay time constants. It is implied from the  
neuronal response curves shown in Fig. 2a that changes in 
excitatory and inhibitory decay time constants have opposite 
impacts on the gain of neurons. Therefore, with fixed values 
of � Syn

EI
= �

Syn

II
 , the mean firing rates of both inhibitory and 

excitatory populations increase concurrently with increases 

in � Syn

EE
= �

Syn

IE
 . However, similar to changes in inhibitory 

decay time constants described above, it is not intuitively 
possible to accurately predict whether the network balance 
will be maintained during such paired changes in the mean 
firing rates of the populations; and if not, to which direction, 
either over-inhibition or over-excitation, the balance will 
shift. In fact, the relative changes between the magnitude of 
the mean excitatory and inhibitory response curves, and the 
varying sensitivity of these curves to changes in synaptic 
decay time constants—which results from complicated inter-
actions in the network between adaptive and non-adaptive 
dynamic neurons—can result in non-intuitive changes in the 
network balance.

To demonstrate the joint effect of both excitatory and 
inhibitory synaptic decay time constants on network bal-
ance, we perform a codimension-two continuation of 
the Hopf bifurcation point that was detected in the codi-
mension-one bifurcation analysis described before. We 
consider the same values for the decay time constants of 
excitatory synapses in both populations, � Syn

EE
= �

Syn

IE
 , and 

vary it as a second bifurcation parameter. The resulting 
curve of Hopf points is shown in Fig. 3f.

It is observed that, when � Syn

EE
= �

Syn

IE
 is reduced from 

its baseline value, the critical transition point (Hopf bifur-
cation) in the dynamics of the network occurs at lower 
values of � Syn

EI
= �

Syn

II
 . This implies that lower values of 

excitatory synaptic decay time constants reduce the overall 
level of excitation in the network, so that this reduction in 
excitation effectively compensates for a rise in excitation 
caused by decreases in inhibitory decay time constants 
�
Syn

EI
= �

Syn

II
 . Therefore, due to this compensatory effect, 

lower values of excitatory synaptic decay time constants 
allow for the network to maintain a stable balanced state 
at much lower values of inhibitory decay time constants.

The upper part of the curve of Hopf points in Fig. 3f 
shows a less intuitive dynamics for larger values of 
�
Syn

EE
= �

Syn

IE
 than its (approximately) baseline value. 

Although not shown here, codimension-one continuations 
of the baseline equilibrium with respect to variations in 
�
Syn

EE
= �

Syn

IE
 , but with fixed values of � Syn

EI
= �

Syn

II
 , still 

show an increase in the level of excitation at higher values 
of � Syn

EE
= �

Syn

IE
 and a shift in the balance of excitation and 

inhibition to hyper-excitation. However, as it can be seen 
in Fig. 3f, at large values of inhibitory synaptic decay time 
constants, including the baseline value � Syn

EI
= �

Syn

II
= 8.3 

ms, this shift to hyper-excitation does not drive the net-
work’s dynamics to an oscillatory regime. Both an oscil-
latory state and a non-oscillatory hyper-excited state can 
be observed in the network activity when � Syn

EE
= �

Syn

IE
 is 

increased from small values to large values while 
�
Syn

EI
= �

Syn

II
 is at about 4 − 7 ms. It should be noted, how-

ever, that the level of stable hyper-excitation observed at 
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large values of excitatory synaptic decay time constants 
corresponds to conductance ratios M

G
Syn
EE

∕M
G

Syn
EI

 that may 
not be biologically plausible.

Importantly, the curve of Hopf bifurcation points 
in Fig.  3f implies that the baseline parameter values 
�
Syn

EE
= �

Syn

IE
= 1.7 ms and � Syn

EI
= �

Syn

II
= 8.3 ms are critical 

values for network stability, in the sense that the network 
remains quite responsive at these values, while relatively small 
reduction in the mean decay time constant of inhibitory neurons 
transitions the network’s dynamics to an oscillatory state.

4.2.2 � Effect of synaptic quantal conductances

The quantal conductance of a synapse is the peak mem-
brane conductance change in a neuron caused by receiving 
a single spike from a presynaptic neuron. Therefore, changes 
in the quantal conductance of a synapse directly modulate 
the strength of the synapse. This is also implied from the 
mean synaptic conductance Eqs. (5) and (6). It should be 
noted that, as described in Section 3, the quantal conduct-
ances QXY , X, Y ∈ {E, I} , that are incorporated in the mean-
field model we use here are in fact quantal conductances 
per connection, that means, they are equal to the quantal 
conductances per synapse times the number of synapses per 
connection. As a result, QXY , X, Y ∈ {E, I} , in our study can 
be altered both by changes in the number of synapses and by 
modulations of the synaptic peak conductances.

The mean synaptic conductances (5) and (6) change 
with synaptic quantal conductances in the same way as 
they change with synaptic decay time constants. However, 
standard deviation and autocorrelation time constants of 
membrane potential fluctuations change differently with 
synaptic quantal conductances. In general, similar to the 
effect of increases in � Syn

EI
= �

Syn

II
 , the response curves 

given in Fig. 2b show that the gain and excitability of both 
inhibitory and excitatory neurons decrease with increasing 
Q

Syn

EI
= Q

Syn

II
 . Therefore, we expect that the effects on net-

work balance caused by varying synaptic quantal conduct-
ances to be similar to the effects caused by changing synap-
tic decay time constants. This can be seen in Fig. 4, which 
shows bifurcation diagrams of key biophysical quantities 
with inhibitory quantal conductances Q Syn

EI
= Q

Syn

II
 varied 

as the bifurcation parameter.
In a rather similar way to what we observed in Fig. 3 

when � Syn

EI
= �

Syn

II
 was changed, we also see here that when 

the value of inhibitory quantal conductances Q Syn

EI
= Q

Syn

II
 

increases the following changes occur in the steady-state 
values of different quantities of the model: the mean firing 
rates of both excitatory and inhibitory populations decrease 
concurrently; the ratio of mean excitatory to mean inhibitory 

synaptic conductances decreases; the absolute value of mean 
synaptic currents decreases; the ratio of the absolute value 
of mean excitatory to the absolute value of mean inhibitory 
synaptic currents in the excitatory population decreases; 
the mean electrochemical driving force of the inhibitory 
synapses in both populations decreases; and the mean driv-
ing force of the excitatory synapses increases. As a result, 
the overall excitation-inhibition balance in the network 
shifts toward over-inhibition as the inhibitory synapses are 
strengthened by increasing � Syn

EI
= �

Syn

II
.

In contrast to the high sensitivity of the network’s stability 
to reductions in decay time constants of the inhibitory neurons, 
the bifurcation diagrams of Fig. 4 imply that the stability of the 
network’s equilibrium is relatively robust to decreases in the 
value of inhibitory quantal conductances. Comparing the 
curves of equilibrium values for the ratios M

G
Syn
EE

∕M
G

Syn
EI

 and 
|M

I
Syn
EE

|∕|M
I
Syn
EI

| shown here in Fig. 4b and c, respectively, with 
those shown in Fig. 3b and c, we can see that significantly 
higher level of overall excitation can be maintained in the net-
work at low values of Q Syn

EI
= Q

Syn

II
 before a transition in the 

network’s dynamics to an oscillatory regime occurs. However, 
the loss of stability of the network’s equilibrium at very low 
values of Q Syn

EI
= Q

Syn

II
 appears to be more critical. Stable delta-

band oscillations can exists only for very short range of values 
of Q Syn

EI
= Q

Syn

II
.

The neuronal response curves given in Fig. 2b show 
that changes in excitatory and inhibitory synaptic quan-
tal conductances have opposite impacts on the gain and 
excitability of the neurons. Unlike the non-intuitive 
dynamics that we observed in Fig. 3f when decay time 
constants of the synapses were jointly changed, the curve 
of Hopf bifurcation points shown in Fig. 4f, when both 
Q

Syn

EI
= Q

Syn

II
 and Q Syn

EE
= Q

Syn

IE
 are free to change, shows 

an intuitively expected dynamics. Increasing the value of 
excitatory quantal conductances results in a rise in the 
level of excitation in the network, which then requires 
stronger inhibitory synapses for maintaining the network 
stability and avoiding transitions to oscillatory states. 
As a result, the Hopf bifurcation point occurs at higher 
values of Q Syn

EI
= Q

Syn

II
 when Q Syn

EE
= Q

Syn

IE
 is increased. 

Moreover, with any fixed values of inhibitory quantal 
conductances, a phase transition occurs in the network’s 
dynamics if the quantal conductances of excitatory syn-
apses increase beyond a Hopf bifurcation value. How-
ever, the baseline parameter values Q Syn

EE
= Q

Syn

IE
= 3 nS 

and Q Syn

EI
= Q

Syn

II
= 12 nS appear to be significantly below 

the curve of Hopf bifurcation points in Fig. 3f, implying 
that the network stability at the baseline state is suffi-
ciently robust to changes in both inhibitory and excita-
tory synaptic quantal conductances.
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4.2.3 � Effect of synaptic reversal potentials

Changes in reversal potentials of synapses modulate the 
electrochemical driving force of the synapses and also 
directly affect the mean membrane potential of the neurons 
across the network, as implied from (8). It can also be seen 
through (9) and (10) that changes in synaptic reversal poten-
tials also affect the standard deviation and autocorrelation 
time constants of neuronal membrane potential fluctuations. 
Therefore, the characteristic response curves of the neurons 
and the dynamics of overall excitation-inhibition balance in 
the network can be significantly affected by changes in the 
reversal potential of the synapses. To show such impacts on 
the global dynamics of the network, we perform bifurca-
tion analysis with respect to variations in synaptic reversal 

potentials, as we have performed with respect to variations 
in the other synaptic parameters. That is, we first continue 
the baseline stable equilibrium of the network with respect to 
variations in the value of inhibitory reversal potential V Syn

I
 , 

and then extend the results by performing a codimension-
two continuation of the detected Hopf bifurcation points by 
additionally allowing variation of the excitatory reversal 
potential V Syn

E
 . The results are shown in Fig. 5.

The neuronal response curves in Fig. 2 show that, within 
a wide range of plausible firing rate frequencies, the gain of 
inhibitory and excitatory neurons increases with both increas-
ing and decreasing changes in the value of V Syn

I
 from its 

baseline value, although the increase in the gain of inhibitory 
neurons caused by a reduction in V Syn

I
 is less pronounced. 

This may suggest that the mean firing rate of the inhibitory 

Fig. 4   Effects of variations in synaptic quantal conductances on the 
long-term mean-field activity of the network. All parameter values of 
the mean-field model, except for the synaptic quantal conductances 
that are explicitly specified in each graph, are set to their baseline val-
ues given in Table  1. The model is driven by background inputs of 
constant mean frequency r Ext

EE
= r

Ext
IE

= 1 Hz . The same description 

as given in Fig. 3 holds for the graphs presented here, with the only 
difference being that here the bifurcation parameter for codimension-
one continuation is the inhibitory quantal conductances Q Syn

EI
= Q

Syn

II
 , 

with the baseline value of 12 nS, and the additional bifurcation 
parameter for codimension-two continuation is the excitatory quantal 
conductances Q Syn

EE
= Q

Syn

IE
 , with the baseline value of 3 nS
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and excitatory populations will increase with V Syn

I
 changes 

in either directions. However, the curves of steady-state mean 
firing rates shown in Fig. 5a do not confirm this intuitive pre-
diction. Although the steady-state value of pI increases when 
V

Syn

I
 decreases below its baseline value, as well as when V Syn

I
 

increases sufficiently above its baseline value, the steady-state 
value of pE is strictly decreasing with increasing V Syn

I
 . In par-

ticular, these profiles of variations in pE and pI have counter-
intuitive relations with the steady-state values of the mean 
membrane potentials. Since V Syn

E
 is fixed at the constant value 

of 0 mV in the codimension-one analysis presented here, the 
curves of excitatory driving forces shown in Fig. 5d imply that, 
on average, both excitatory and inhibitory neuronal popula-
tions monotonically become more depolarized with increases 

in V Syn

I
 , which is a pattern of variation not directly implied 

from the mean firing rate of the neurons.
An explanation for the network interactions that could 

result in the steady-state curves described above can be as fol-
lows. Although the neurons become further depolarized with 
increases in V Syn

I
 , the driving forces of inhibitory synapses, 

|MVX
− V

Syn

I
| , X ∈ {E, I} , shown in Fig. 5d keeps decreasing 

to very small values as V Syn

I
 increases to large values. This 

results in significant reduction in inhibitory synaptic currents 
at large values of V Syn

I
 , despite the rise in the firing rates of 

the inhibitory neurons due to their increased gain. As a result, 
a stable balance of excitatory and inhibitory synaptic currents 
can be achieved if the mean firing rate of excitatory neurons 
significantly reduces to near zero, as shown in Fig. 5a. It 

Fig. 5   Effects of variations in synaptic reversal potentials on the long-
term mean-field activity of the network. All parameter values of the 
mean-field model, except for the synaptic reversal potentials that 
are explicitly specified in each graph, are set to their baseline val-
ues given in Table  1. The model is driven by background inputs of 
constant mean frequency r Ext

EE
= r

Ext
IE

= 1 Hz . The same description 

as given in Fig. 3 holds for the graphs presented here, with the only 
difference being that here the bifurcation parameter for codimension-
one continuation is the inhibitory reversal potential V Syn

I
 , with the 

baseline value of −80 mV, and the additional bifurcation parameter 
for codimension-two continuation is the excitatory reversal potential 
V

Syn

E
 , with the baseline value of 0 mV
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should be noted, however, that in the studies presented here a 
constant level of excitation is always provided to all neurons 
of the network by the excitatory background inputs of con-
stant frequency r Ext

EE
= r Ext

IE
= 1 Hz . In the opposite direction, 

when V Syn

I
 decreases to low values, the mean driving force 

of inhibitory synapses increases to sufficiently large values, 
which allow for inhibitory synaptic currents that are large 
enough to be balanced by larger excitatory synaptic currents. 
Therefore, a stable balance of currents can be achieved at low 
values of V Syn

I
 , with both pE and pI taking relatively large 

values due to the increased neuronal gains. This increase in 
the mean firing rates of the neurons with decreases in V Syn

I
 

to sufficiently low values can be seen in Fig. 5a.
The steady-state value of the ratio M

G
Syn
EE

∕M
G

Syn
EI

 between 
mean excitatory and inhibitory conductances, as shown in 
Fig. 5b, decreases with increasing V Syn

I
 . Consistent with 

the explanation provided above, this implies that the bal-
ance of excitation and inhibition in the network moves 
monotonically with V Syn

I
 , to over-inhibition for large val-

ues of V Syn

I
 , and to over-excitation for small values of 

V
Syn

I
 . However, unlike what we observed in Figs. 3c and 

4c for changes in synaptic decay time constants and quan-
tal conductances, here the monotonic shift in the level of 
excitation-inhibition balance cannot be correctly implied 
from the ratio |M

I
Syn
EE

|∕|M
I
Syn
EI

| between synaptic currents in 
the excitatory population, as shown in Fig. 5c.

The bifurcation diagrams of Fig. 5 further reveal the pres-
ence of two Hopf bifurcation points. When V Syn

I
 decreases 

below the Hopf point denoted by green dots in Fig. 5, the net-
work’s dynamics transitions to a stable oscillatory behavior. 
Fig. 5e shows that the frequency of these oscillations are in 
the delta band. However, the emergent delta oscillations here 
are of significantly lower magnitude than those arising from 
changes in inhibitory synaptic decay time constants, as shown 
in Fig. 3. Moreover, the curve of stable limit cycles calculated 
here vanishes at a second Hopf point when V Syn

I
 decreases 

further. This implies that reductions in the value of inhibitory 
synaptic reversal potentials is less critical to the stability of 
the network. In fact, a stable yet high level of excitation can be 
present in the network at low values of V Syn

I
.

Finally, codimension-two continuation of the two Hopf bifur-
cation points detected in the analysis described above implies 
that a qualitatively similar network dynamics is observed at 
a wide range of values of excitatory synaptic reversal poten-
tials. This is shown in Fig. 5f. Unlike changes with respect to 
V

Syn

I
 , the neuronal response curves in Fig. 2c show monotonic 

changes in the gain of neurons with respect to V Syn

E
 . When 

V
Syn

E
 decreases, the gain of neurons decreases significantly. 

The resulting reduction in the level of excitation then allows for 
further reduction in V Syn

I
 before the network transitions to an 

oscillatory regime. Therefore, the two Hopf bifurcation points 
occur at lower values of V Syn

I
 when V Syn

E
 decreases.

4.3 � Structural contributors to the balance 
of excitation and inhibition

The mean-field model we use in our study represents a network of 
randomly connected neurons with relatively sparse connectivity. 
The dynamics of such network can be significantly affected by 
the structural factors that determine the overall topology of the 
network. These factors include the relative number of excitatory 
and inhibitory neurons in the network and the density of connec-
tivity between the neurons. By employing bifurcation analysis 
similar to our previous investigations on the effect of physiological 
parameters intrinsic to synapses and neurons, we analyze how 
the steady-state balance of excitation and inhibition obtained at 
the baseline network structure is altered by changes in each of 
the structural factors determining the overall level of recurrent 
neuronal interactions in the network.

4.3.1 � Effect of the ratio between the number of inhibitory 
and excitatory neurons

Knowing the crucial role of inhibitory neurons in stabiliz-
ing the excitatory interactions across the network, the ratio 
between the total number of inhibitory and excitatory neu-
rons is expected to have significant impacts on the excita-
tion-inhibition balance. Here, with a fixed number of neu-
rons N = 10000 , we change the inhibitory proportion NI∕N 
of the total network population and observe how the steady-
state mean-field activities in the network change accordingly. 
The resulting codimension-one bifurcation diagrams for dif-
ferent quantities of the model are shown in Fig. 6.

Since N is fixed, a change in the ratio NI∕N alters both NE 
and NI . Therefore, considering (1) and (2), the mean values of 
both excitatory and inhibitory synaptic conductances given by 
(5) and (6), respectively, change with NI∕N . Standard devia-
tion and autocorrelation time constant of membrane potential 
fluctuations in both excitatory and inhibitory populations are 
also directly affected by changes in NI∕N , as implied by (9), 
(10), (1), and (2). Moreover, a change in NE and NI directly 
modifies the dynamics of the covariance of firing rates, given 
by (14). Despite these different contributions in the equa-
tions of the model in comparison with those of the inhibi-
tory synaptic decay time constants, the bifurcation diagrams 
obtained by changing NI∕N closely resemble the diagrams 
obtained by changing � Syn

EI
= �

Syn

II
 . This can be seen by com-

paring Fig. 6 with Fig. 3. Therefore, when NI∕N changes, the 
long-term dynamics of the network changes similarly to what 
we observed before as a result of changes in � Syn

EI
= �

Syn

II
 . In 

particular, increasing the inhibitory proportion of the total 
network population, NI∕N , from its baseline value moves 
the excitation-inhibition balance toward over-inhibition. 
Moreover, the stability of network activity appears to be criti-
cally sensitive to decreases in NI∕N , so that relatively small 
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reduction in NI∕N causes a transition in network activity to 
stable oscillations in the delta frequency band.

The contribution of inhibitory neurons in regulating net-
work activity is not only influenced by their relative popula-
tion size, but also by their cellular properties and efficacy of 
the synapses that they make on other neurons, as we studied 
separately above. To see some of the joint effects of such 
structural and physiological factors on the stability of bal-
anced activity in the network, we perform codimension-two 
continuation of the Hopf point detected in Fig. 6 by addition-
ally varying each of the inhibitory synaptic parameters as a 
second bifurcation parameter. The resulting curves of Hopf 
bifurcation points are shown in Fig. 7.

The results discussed before showed that changes in 
�
Syn

EI
= �

Syn

II
 and NI∕N have very similar impacts on the 

network’s dynamics. A decrease in � Syn

EI
= �

Syn

II
 increases 

the level of excitation and causes the network to undergo 
a critical transition to an oscillatory dynamics at a Hopf 
bifurcation point. Consequently, larger numbers of inhibi-
tory neurons relative to the number of excitatory neurons 
are required to maintain the stability of the network at lower 
values of � Syn

EI
= �

Syn

II
 . This explains the profile of the curve 

of Hopf points shown in Fig. 7a. Disregarding the irregularly 
folded segment of the curve shown in Fig. 7b—which can 
be due to the semi-analyticity of the transfer functions and 
high sensitivity of the response curves of excitatory neurons 

Fig. 6   Effects of variations in the ratio between the number of 
inhibitory and excitatory neurons on the long-term mean-field activ-
ity of the network. All parameter values of the mean-field model, 
except for the number of inhibitory and excitatory neurons, are set 
to their baseline values given in Table  1. The total number of neu-
rons is fixed at N = 10000 . The inhibitory proportion of neurons in 

the network, NI∕N , is varied over a reasonable range of values. The 
model is driven by background inputs of constant mean frequency 
r
Ext
EE

= r
Ext
IE

= 1 Hz . The same description as given for graphs a–e  in 
Fig.  3 holds for the graphs presented here, with the only difference 
being that here the bifurcation parameter for codimension-one con-
tinuation is NI∕N , with the baseline value of 0.13
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observed in Fig. 2b at low values of Q Syn

EI
= Q

Syn

II
—this 

curve of Hopf bifurcation points implies a generally similar 
effect when Q Syn

EI
= Q

Syn

II
 and NI∕N are jointly varied. That 

is, a larger ratio of NI∕N is required for the stability of bal-
anced activity at lower values of Q Syn

EI
= Q

Syn

II
 . However, 

the sensitivity of the Hopf points with respect to changes 
in Q Syn

EI
= Q

Syn

II
 and NI∕N appears to be particularly differ-

ent. The critical (bifurcation) value of NI∕N , below which 
the network transitions to oscillatory behavior, changes 
only slightly with sufficiently large values of Q Syn

EI
= Q

Syn

II
 . 

However, this critical ratio appears to be highly sensitive to 
excessively low values of Q Syn

EI
= Q

Syn

II
.

The curve of Hopf bifurcation points shown in Fig. 7c 
implies that both high and low values of V Syn

I
 allow for net-

work stability even at very low values of NI∕N , although 
such stable activity at low values of V Syn

I
 will correspond 

to a state of stable hyper-excitation. Moreover, it can be 
observed that the critical value of NI∕N is very sensitive 
to both increases and decreases in V Syn

I
 from its baseline 

value of −80 mV. Therefore, relatively small changes in the 
baseline value of V Syn

I
 can remove the oscillatory activity of 

the network caused by a shortage of the number of inhibitory 
neurons in the network.

4.3.2 � Effect of the connectivity density

The random connectivity in the local network that we study 
here is relatively sparse, with baseline connection prob-
abilities PEE = PIE = PEI = PII = 0.05 between and within 
excitatory and inhibitory populations. To investigate how 
changes in the level of sparsity in network connectivity 
affects the dynamic balance of excitation and inhibition, we 
continue the stable baseline equilibrium of the network with 

respect to changes in the value of overall connectivity den-
sity PEE = PIE = PEI = PII as a codimension-one bifurcation 
parameter. The results are shown in Fig. 8.

The mean firing rates of both excitatory and inhibitory 
populations decrease concurrently with increases in the 
overall connectivity density, as shown in Fig. 8a. The ratio 
of the mean excitatory to inhibitory conductances shown in 
Fig. 8b indicates that the network’s excitation-inhibition bal-
ance moves toward over-inhibition when the network’s over-
all connectivity density increases. On the other hand, at low 
values of PEE = PIE = PEI = PII , which correspond to highly 
sparse network connectivity, the network operates at a non-
oscillatory state of hyper-excitation without undergoing a 
phase transition to a slow oscillatory regime. This is despite 
the significant decrease in mean synaptic conductances and 
synaptic currents at low values of overall connectivity den-
sity in the network, as it can be seen in Fig. 8b and c. In 
general, we observe high sensitivity of the network balance 
to increases in the sparsity of the network from its baseline 
level, wheres much less sensitivity is observed when overall 
network connectivity becomes denser. Moreover—unlike the 
other cases that we have studied—we notice that no sus-
tained oscillatory behavior emerges in the mean field activity 
of the network when over-excitation occurs due to increases 
in the sparsity of the network connectivity.

Besides changes in the overall network connectivity, 
population-specific changes in connection probabilities also 
affect the stability and balance of activity across the network. 
Recurrent excitatory-to-excitatory connections are necessary 
for sustaining the activity of cortical networks when they 
are involved in performing memory or cognitive processing 
tasks. Inhibitory-to-excitatory connections are crucial for sta-
bilizing and regulating the excitatory activity in the network, 
and excitatory-to-inhibitory connections provide inhibitory 

Fig. 7   Joint effects of the synaptic parameters and the ratio between 
the number of inhibitory and excitatory neurons on the long-term 
mean-field activity of the network. Codimension-two continuation 
of Hopf bifurcation points are shown in each graph. The inhibi-
tory proportion of neurons in the network, NI∕N , is considered as 
one of the bifurcation parameters in all graphs. Different synaptic 
parameters are then chosen in each graph as the second bifurcation 
parameter. Arrows indicate transition from stable (dark) to unstable 

(light) equilibria as the parameters are varied across the curve. The 
points marked by dots are the same Hopf bifurcation points marked 
in Figs. 3, 4, 5 and 6. a Curve of Hopf bifurcation points with decay 
time constant of inhibitory synapses chosen as the second bifurcation 
parameter. b Curve of Hopf bifurcation points with quantal conduct-
ance of inhibitory synapses chosen as the second bifurcation param-
eter. c  Curve of Hopf bifurcation points with reversal potential of 
inhibitory synapses chosen as the second bifurcation parameter
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neurons with sufficient excitation they need for their opera-
tion. However, the reason for the presence of a substantial 
amount of recurrent inhibitory-to-inhibitory connections in 
local cortical networks (Isaacson & Scanziani, 2011; Gibson 
et al., 1999), and the functionality of this type of connectiv-
ity, is less intuitive to explain. These recurrent inhibitory con-
nections provide a level of disinhibition in the network that 
can regulate the overall inhibitory activity and prevent over-
inhibition. However, the disinhibition created through these 
inhibitory-to-inhibitory connections also reduces the effec-
tiveness of the inhibitory neurons in stabilizing the activity of 
excitatory neurons. To disambiguate functional implications 
of inhibitory-to-inhibitory connectivity, we investigate how 
varying only the density of this type of recurrent connectiv-
ity impacts the network balance. We choose the probability 
of inhibitory-to-inhibitory connections, PII , as a bifurcation 
parameter and continue the baseline equilibrium state of the 
network. The results are shown in Fig. 9.

The steady-state mean firing rate curves shown in 
Fig. 9a confirm a significant rise in the firing rate of inhibi-
tory neurons when the level of disinhibition in the network 

decreases substantially at low values of PII . The resulting 
intensive inhibition significantly hyperpolarizes the excita-
tory neurons, as seen in Fig. 9d, and suppresses their firing 
activity. This shift to hyper-inhibition in the network bal-
ance reflects clearly on the steady-state ratios M

G
Syn
EE

∕M
G

Syn
EI

 
and |M

I
Syn
EE

|∕|M
I
Syn
EI

| , as shown in Fig. 9b and c. In the oppo-
site direction, however, the excessive disinhibition that 
results from increasing PII above its baseline value yields 
a relatively sharp increase in the level of excitation in the 
network. Excitatory neurons become exceedingly depolar-
ized and their firing rates increases significantly. This sub-
stantial rise in the activity of excitatory neurons also depo-
larizes the inhibitory neurons and results in a concurrent 
rise in their firing rate. However, as implied from Fig. 9a 
and d, the strong recurrent inhibition that is generated 
within the inhibitory population at large values of PII sig-
nificantly restricts the mean depolarization level and firing 
rate of inhibitory neurons. This restrains the inhibitory 
neurons from effectively controlling the excitatory activity 
in the network, so that the excitation-inhibition balance 

Fig. 8   Effects of variations in the overall network connectivity den-
sity on the long-term mean-field activity of the network. All param-
eter values of the mean-field model, except for the connection 
probabilities, are set to their baseline values given in Table  1. The 
model is driven by background inputs of constant mean frequency 
r
Ext
EE

= r
Ext
IE

= 1 Hz . All connection probabilities are set to take the 
same value, which is varied as the bifurcation parameter over a bio-
logically plausible range of values. The resulting codimension-one 
continuation of the network equilibrium is shown in the graphs for 
different network quantities. Curves of equilibria are shown by 
solid lines. No changes in the stability of the equilibria is detected. 

The points marked by dots in all graphs correspond to the baseline 
parameter values PEE = PIE = PEI = PII = 0.05 . We show bifurcation 
diagrams for a mean excitatory firing rate pE and mean inhibitory fir-
ing rate pI , b  mean synaptic conductances M

G
Syn
EX

 , X ∈ {E, I} , of the 
excitatory population, and the ratio between the two conductances, 
c  absolute value of the mean excitatory and inhibitory synaptic cur-
rents, |M

I
Syn
EX

| , X ∈ {E, I} , in the excitatory population, as well as the 
ratio between the two currents, d mean excitatory and inhibitory syn-
aptic driving forces |M

VE
− V

Syn

X
| , X ∈ {E, I} , in the excitatory popu-

lation, as well as such driving forces |M
VI
− V

Syn

X
| , X ∈ {E, I} , in the 

inhibitory population
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moves to excessive excitation with increases in PII . The 
steady-state value of the ratio M

G
Syn
EE

∕M
G

Syn
EI

 shown in 
Fig. 9b precisely indicates such a shift in the network 
balance.

The bifurcation diagrams of Fig. 9 further reveal that, as 
PII increases from its baseline value, the network’s dynam-
ics undergoes several Hopf bifurcations, at which the sta-
bility of the network equilibrium switches and sustained 
oscillations emerge, or vanish. In particular, stable oscilla-
tions of delta-band frequency emerge when the density of 
recurrent inhibitory connectivity increases slightly above 
its baseline value. However, these oscillations disappear for 
moderately higher values of recurrent inhibitory connec-
tivity, at which a non-oscillatory state of hyper-excitation  
is present across the network. The results also predict the 

emergence of very-high amplitude stable oscillatory activ-
ity at disproportionately large values of PII . However, it 
should be noted that, due to the Markovian assumption 
and other approximations used in the derivation of the 
mean-field model, the accuracy of the mean-field model 
degrades at the high firing activity associated with these 
oscillations. Note also that, similar to the results presented 
before, the curves of limit cycles originating from each 
Hopf bifurcation points have been continued only up to the 
point where the mean-field model remains mathematically 
valid. This numerical termination point in the continua-
tion of limit cycles usually occurs at parameter values for 
which the quantity under the square root in (9) becomes 
negative.

Fig. 9   Effects of variations in the inhibitory-to-inhibitory connection 
probability on the long-term mean-field activity of the network. All 
parameter values of the mean-field model, except for the probability 
of connections between inhibitory neurons, are set to their baseline 
values given in Table 1. The model is driven by background inputs 

of constant mean frequency r Ext
EE

= r
Ext
IE

= 1 Hz . The same description 
as given for graphs a–e in Fig. 3 holds for the graphs presented here, 
with the only difference being that here the bifurcation parameter for 
codimension-one continuation is PII , with the baseline value of 0.05
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4.4 � Instantaneous correlation of excitation 
and inhibition

The results presented so far have been obtained based on the 
analysis of long-term dynamics of the mean-field model, 
which provides information on the overall level of excitation-
inhibition balance throughout the network, and how such 
balance is affected by changes in each of the physiological 
and structural parameters of the network. In experimental 
studies, a balance between excitation and inhibition in local 
cortical networks is sometimes deduced from tight correla-
tions between the instantaneous activities of the inhibitory 
and excitatory populations (Okun & Lampl, 2008; Dehghani 
et al., 2016; Vogels et al., 2011). Therefore, here we inves-
tigate how two distinct states of network activity that we 
observed in the results presented above, namely, a stable 
balanced state and a (functionally imbalanced) oscillatory 
state, reflect on the instantaneous correlation between the 
mean firing rates of excitatory and inhibitory populations.

We use the results we obtained above when we analyzed 
the effect of synaptic decay time constants. We use MAT-
LAB’s ode45 numerical integrator to solve the equations of 
the mean-field model corresponding to two different states: 
the baseline balanced state with � Syn

EI
= �

Syn

II
= 8.3 ms, and a 

high-amplitude slow oscillatory state with � Syn

EI
= �

Syn

II
= 6.5 

ms. Note that the emergence of stable delta-band oscilla-
tions in the later state is ensured, as an inhibitory synaptic 
decay time constant of 6.5 ms is smaller than the critical 
Hopf bifurcation value of 7.06 ms obtained in the bifurcation 
analysis results shown in Fig. 3. Therefore, with a constant 
background drive of r Ext

EE
= r Ext

IE
= 1 Hz , the solutions of the 

model with � Syn

EI
= �

Syn

II
= 6.5 ms oscillate on a limit cycle, 

as shown in the top graph in Fig. 10b.
Since a mean-field model represents network activity 

only at the mean-field level, it cannot reproduce the self-
generated small random fluctuations typically observed in 
the mean firing rate or mean membrane potential of balanced 
in vivo cortical networks or balanced in silico networks of 
spiking neurons. Therefore, with a background input of con-
stant frequency, the mean-field solutions of the model in a 
balanced state quickly converge to constant values, as seen 
in our simulation result shown in the top graph of Fig. 10a. 
When the network transitions to an oscillatory regime, 
shown in the top graph of Fig. 10b, the mean-field solutions 
with constant inputs converge to plain oscillations without 
any random fluctuations. The presence of tight instantaneous 
correlations between excitatory and inhibitory firing rates in 
these plain solutions is then trivial, and not very informative. 
Hence, in order to make informative observations, we induce 
random fluctuations in the mean-field solutions of the model 
using background inputs of randomly fluctuating frequency, 
instead of the constant frequency we considered for the 

baseline network. For each of the network states described 
above, we generate 50 different solution curves for pE and 
pI by driving the model with 50 different external excitatory 
inputs r Ext

EE
= r Ext

IE
 . The temporal profiles of these inputs are 

generated by adding random fluctuations of amplitude 0.4 
Hz to the constant baseline inputs r Ext

EE
= r Ext

IE
= 1 Hz . The 

frequency bandwidth of these fluctuations ranges approxi-
mately from 1 to 20 Hz, as described in Fig. 10. To remove 
the effect of initial transient responses of the network, we 
use only the last 2 seconds of the computed solution curves 
for our correlation analysis described below.

A sample temporal profile of pE and pI is shown in Fig. 10 
for each state, along with normalized cross-correlations 
between pE and pI for all 50 pairs of simulated mean fir-
ing rates. The DC components of the mean firing rates are 
removed before computing the cross-correlations. In both 
states, the sample temporal curves show a tight instantane-
ous correlation between the mean excitatory and inhibitory 
firing rates. The normalized cross-correlation curves con-
firm the presence of such tight correlations in all 50 firing 
rate profiles. The time lags between the mean excitatory and 
inhibitory firing rates in both states appear to be very small: 
3.96 ± 2.4 ms at the baseline balanced state, and 1.35 ± 1.44 
ms at the oscillatory state, meaning that on average the 
inhibitory firing activity is slightly ahead of the excitatory 
firing activity. It should be noted though, that these tight 
correlations between instantaneous excitatory and inhibitory 
activities exist at both of the two distinct stable and oscilla-
tory network states that we analyzed here, despite the essen-
tially different dynamic behavior and conditions of overall 
excitation-inhibition balance that we observed at these states 
through our bifurcation analysis.

4.5 � Balanced and oscillatory activity in  
spiking networks

We performed our extensive bifurcation analyses presented 
above by taking the advantage of the simplicity and compu-
tational tractability of the mean-field model, which allowed 
for investigating changes in the long-term dynamics of the 
underlying local cortical network over a wide range of vari-
ations in the key physiological and structural parameters of 
the network, thereby observing the impacts of these factors 
on the overall balance of excitation and inhibition in the 
network. However, the inevitable simplifying assumptions, 
such as a Markovian assumption, and the semi-analytic 
derivations that were used in developing the mean-field 
model we employed in our study can raise concerns about 
the reliability of our predictions made based on this model. 
To address such concerns, we use the network of 10, 000 
spiking AdEx neurons described in Section 3 to verify the 
predictions made by the mean-field model.
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For the results presented in this section, we specifically 
test whether the results we obtained from the mean-field 
model on the state transition caused by changes in inhibitory 
synaptic decay time constants, as well as those obtained on 
instantaneous correlations between excitatory and inhibi-
tory mean firing rates, can be replicated by a sufficiently 
large network of spiking neurons. We use the forward 
Euler method to simulate the spiking neuronal network 
(21)–(22) at the same two dynamic states as described in 
the results shown in Fig. 10, namely, the state of balanced 
asynchronous irregular activity with the baseline param-
eter values � Syn

EI
= �

Syn

II
= 8.3 ms, and the oscillatory state 

associated with reduced inhibitory decay time constants 
�
Syn

EI
= �

Syn

II
= 6.5 ms. The rastergram of spiking activity at 

each state is shown in Fig. 11 for ten percent of inhibitory 
and excitatory neurons.

The rastergram shown in Fig. 11a demonstrates asyn-
chronous and irregular activity at the baseline state. The 
mean firing rates of the excitatory and inhibitory neurons, 
calculated using the last 2 seconds of the spike trains in 
order to remove the effect of initial transient activity, are 
1.13 Hz and 5.84 Hz, respectively. The mean excitatory-
to-excitatory synaptic conductance is 8.6 nS, the mean 

inhibitory-to-excitatory synaptic conductance is 37.8 nS, 
and the ratio between these two conductances is 0.227. 
The rates of firing activity obtained here, as well as the 
mean synaptic conductances, almost precisely match 
those we obtained at the baseline balanced equilibrium of 
the mean-field model, that is, pE = 1.15 Hz, pI = 5.71 Hz, 
M

G
Syn
EE

= 8.7 nS, M
G

Syn
EI

= 37.0 nS, and M
G

Syn
EE

∕M
G

Syn
EI

= 0.235.
Consistent with the predictions made through bifurcation 

analysis of the mean-field model, the rastergram shown in 
Fig. 11b demonstrates emergence of a slow oscillatory burst-
ing state in the activity of the spiking neurons when inhibi-
tory decay time constants are reduced to � Syn

EI
= �

Syn

II
= 6.5 

ms, a value below the Hopf bifurcation value shown in 
Fig. 3. Although the population bursts in the rastergram do 
not appear completely periodically, partly because of the sto-
chastic nature of the Poisson-distributed input spike trains, 
counting the total number of bursts appearing in the raster-
gram of Fig. 11b confirms a close agreement between the 
frequency of oscillatory bursting observed here with that of 
the mean-field oscillations shown in Fig. 10b. Further details 
on the dynamics of the network at this oscillatory bursting 
state are provided in Section 2 of the supplementary material 
(Online Resource).

Fig. 10   Instantaneous correlation between mean-field excitatory and 
inhibitory activity at baseline (balanced) and oscillatory states. At 
the top of each panel, instantaneous profiles of mean excitatory and 
inhibitory firing rates, pE and pI , computed for the mean-field model 
with the constant background drive r Ext

EE
= r

Ext
IE

= 1 Hz , are shown 
over a simulation time interval of 5000 ms. All biophysical param-
eters of the model take their baseline values, except for � Syn

EI
 and � Syn

II
 

which take different values in each panel. The bottom right graph of 
each panel shows normalized cross-correlations between mean excita-
tory and inhibitory firing rates over the simulation time interval of 
[3000, 5000] ms. In each of these graphs, 50 correlation curves are 
shown that are obtained from simulating the model with 50 different 
background-level external drives. The DC component of the mean 
firing rates is removed before computing the cross-correlations. The 
external drives are generated by adding random fluctuations of ampli-
tude 0.4 to the baseline background value of r Ext

EE
= r

Ext
IE

= 1 Hz . 

The temporal patterns of the fluctuations are generated by low-pass 
filtering 50 stochastic signals, each of which taking uniformly dis-
tributed random values at each instances of time. The passbands of 
the low-pass filters take 50 different values in the range from 1 Hz to 
20  Hz. In each cross-correlation graph, a sample curve correspond-
ing to input fluctuations filtered at passband frequency of 10 Hz is 
highlighted. The instantaneous profiles of the mean firing rates cor-
responding to the highlighted cross-correlation curves are shown 
on the bottom left side of each panel. a  Instantaneous correlation 
between excitatory and inhibitory firing rates at the baseline balanced 
state, with baseline values of inhibitory synaptic decay time constants 
�
Syn

EI
= �

Syn

II
= 8.3 ms. b  Instantaneous correlation between excita-

tory and inhibitory firing rates at an oscillatory state emerged in the 
dynamics of the model when the values of inhibitory synaptic decay 
time constants are reduced to � Syn

EI
= �

Syn

II
= 6.5 ms
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Importantly, the spiking activity we obtained here, both at 
the asynchronous irregular regime and at the oscillatory burst-
ing regime, are also closely comparable with those obtained 
from in vitro experiments and detailed in silico reconstruction 
of the rat neocortical microcircuitry, as shown in Figure 12 of 
the work by Markram et al. (2015). Moreover, similar to the 
results shown in Fig. 10, the instantaneous profiles of mean 
firing rates and the normalized cross-correlation curves shown 
in Fig. 11 indicate a tight temporal correlation between the 
excitatory and inhibitory spontaneous activity, in both asyn-
chronous irregular and oscillatory bursting regimes. Consistent 
with the results obtained using the mean-field model, the time 
lag between the mean excitatory and inhibitory spiking rates 
obtained here are very small: 3.32 ms at the asynchronous 
irregular state, and 0.84 ms at the oscillatory bursting state. 
At both states, the spontaneous inhibitory activity appears to 
be slightly ahead of the excitatory activity.

The results presented above verified the key predictions 
of our mean-field model-based analysis of the effects of 

variations in inhibitory synaptic decay time constants. All 
key predictions on the effects of variations in other network 
parameters are similarly verified in the results provided in 
Section 1 of the supplementary material (Online Resource). 
It should be noted, however, that there are a few cases in 
which the firing rates predicted by the mean-field model 
do not match those obtained from the spiking network very 
accurately. See, for instance, the firing rates provided in 
Fig. S3 of the supplementary material when V Syn

I
 takes the 

extreme value of V Syn

I
= −100 mV. As discussed before, 

such inaccuracies are most likely due to the simplifying 
assumptions used for derivation of the mean-field model. 
At high firing rates, which can result form the presence of 
over-excitation in the network, the Markovian assumption 
of the network activity will not be valid. Moreover, as the 
discussion following Eq. (3.27) of the work by El Boustani 
and Destexhe (2009) implies, the approximation used in 
derivation of the simple form of neuronal transfer func-
tions given by (11) remains sufficiently accurate mainly in 

Fig. 11   Instantaneous correlation between the average spiking activ-
ity of excitatory and inhibitory neurons at asynchronous irregular 
(baseline balanced) and oscillatory bursting states. In each panel, a 
rastergram of the excitatory (red) and inhibitory (blue) spiking activ-
ity in the spiking neuronal network (21)–(22) is shown on the left. 
For visual clarity, only the activity of a randomly selected 10 percent 
subset of total neurons is illustrated. The biophysical parameters of 
the spiking network are set as described in Section 3, except for the 
inhibitory synaptic decay time constants � Syn

nm  , n ∈ N  , m ∈ NI which 
take different values in each panel. The network receives Poisson-dis-
tributed background spike trains generated according to the descrip-
tion provided in Section  3. The middle graph in each panel shows 

the average firing rate of the excitatory and inhibitory neurons over 
the last 2 seconds of the simulation time. The graph of normalized 
cross-correlation between these instantaneous mean firing activities, 
computed after removal of their DC component, is shown on the right 
side of each panel. a  Spontaneous activity and correlation between 
average excitatory and inhibitory firing rates at the baseline asynchro-
nous irregular state with baseline values of inhibitory synaptic decay 
time constants, � Syn

nm = 8.3 ms, n ∈ N  , m ∈ NI . b Spontaneous activ-
ity and correlation between average excitatory and inhibitory firing 
rates at an oscillatory bursting state emerged as a result of a reduction 
in the values of inhibitory synaptic decay time constants to � Syn

nm = 6.5 
ms, n ∈ N  , m ∈ NI
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asynchronous irregular spiking regimes. The impact of such 
approximation on the accuracy of the model is indirectly 
improved, to some extent, by inclusion of the information 
about second moments of subthreshold membrane potential 
fluctuations in the semi-analytic effective threshold (12). 
However, the approximation still affects the performance 
of the model to fully accurately predict the network activ-
ity far from its balanced equilibrium, or when the network 
dynamics approaches a Hopf bifurcation point and presents 
synchronous activity. Another source of inaccuracy in the 
performance of the mean-field model at extreme parameter 
values is due to the fit parameters of the semi-analytic trans-
fer functions not generalizing well to the activity of neurons 
at such parameter values. Despite such sources of inaccura-
cies, as stated above the key predictions of the mean-field 
model were completely verified by the results of the spiking 
network, in many cases even with remarkable quantitative 
accuracy.

Recent developments of the mean-field theory of spik-
ing neuronal networks have relaxed some of the simplify-
ing assumptions described above, providing a framework 
for more accurately characterizing the mean-field activity 
of the networks away from their equilibria and in synchro-
nous regimes; for example, see the theory developed by 
Vinci et al. (2023). Incorporating into such developments 
the biophysically plausible cellular, synaptic, and structural 
parameters of a cortical network, such as those we have pro-
vided in Table 1, can therefore provide a framework for more 
accurately predicting the network dynamics with respect to 
variations in different parameters.

5 � Discussion and conclusion

By leveraging the computational tractability of a biologi-
cally reasonable conductance-based mean-field model, we 
conducted a fairly comprehensive study of how variations 
in some of the main synaptic and structural parameters 
of a local cortical network—specifically characterized by 
the properties of the mouse and rat neocortical microcir-
cuitry—influence the balance between overall excitation 
and inhibition in the network. For this, we performed 
bifurcation analyses of the baseline balanced equilibrium 
state of the mean-field model with respect to variations 
in each of the key parameters of the network, namely, the 
synaptic (physiological) parameters such as synaptic decay 
time constants, synaptic quantal conductances, and synap-
tic reversal potentials, as well as the structural parameters 
such as the ratio of the number of inhibitory neurons to 
the total number of neurons, the density (or sparsity) of 
the overall network connectivity, and the inhibitory-to-
inhibitory connection probability. Additionally, we used 
a sufficiently large network of spiking neurons to test the 

reliability of the predictions made based on the mean-field 
model. Below, we summarize and discuss the key observa-
tions of our study.

Continuous quantification of the level of balance  The level 
of overall excitation and inhibition in a network is often 
identified in previous studies as either balanced or imbal-
anced. However, the degree by which the overall balance of 
excitation and inhibition—as we qualitatively interpreted as 
an operating set point for a normally functioning cortical net-
work—deviates from its perfect level is continuously quan-
tifiable. That means, we can quantify how balanced the net-
work is, or how far the network activity is deviated from the 
balanced state. We performed such continuous quantification 
in our analysis. We first identified a baseline (well-) bal-
anced reference state for the mean-field activity of our model 
by analyzing its long-term behavior in response to different 
levels of external excitatory inputs. Then, we investigated 
how this established balanced state is altered by changes in 
different parameters of the network; see Fig. 1. Our results 
confirm that the ratio of the mean excitatory to the mean 
inhibitory synaptic conductances in the network—in refer-
ence to its value at the baseline balanced state—is a reliable 
measure for continuously quantifying the level of overall 
excitation-inhibition balance. Mean excitatory and inhibitory 
conductances can be experimentally measured, both in vitro 
and in vivo (Monier et al., 2008), and the ratio between them 
has been shown to remain constant in well-balanced states 
(Shu et al., 2003; Wehr & Zador, 2003; Haider et al., 2006; 
Xue et al., 2014; Denève & Machens, 2016).

Neuronal gain and excitability modulation  Increasing the 
decay time constant and the quantal conductance of inhibi-
tory synapses decreases the gain (slope of the response 
curve) and excitability (horizontal shift of the response 
curve) of the neurons. Opposite effects are observed when 
the decay time constant and the quantal conductance of 
excitatory synapses are increased. Increases in excitatory 
synaptic reversal potentials result in enhancements in the 
gains of the neurons. Changes in the inhibitory reversal 
potentials have non-monotonic effects on the gain of the 
neurons; see Fig. 2.

Effects of synaptic parameters  Increasing the value of the 
three main inhibitory synaptic parameters that we studied 
here, to values above their baseline, moves the excitation-
inhibition balance toward over-inhibition. On the other 
hand, decreasing these parameters below their baseline 
value moves the balance toward over-excitation. Modula-
tions of the excitatory synaptic parameters have the opposite 
effects on the network balance, but with slightly less critical 
impacts on the network stability; see Figs. 3–5.
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Effects of the inhibitory proportion of neurons  Changes in 
the ratio of the number of inhibitory neurons to the total 
number of neurons affect the excitation-inhibition balance in 
essentially similar way to how changes in inhibitory synaptic 
decay time constants do; see Fig. 6.

Effects of the overall network connectivity density  Increas-
ing the sparsity of overall network connectivity moves the 
network balance toward over-excitation. When the network is 
very sparsely-connected, a further increase in the sparsity of 
the network connectivity causes a very sharp rise in the level of 
overall excitation, yet the network dynamics does not transition 
to an oscillatory regime. Increasing the density of overall net-
work connectivity, on the other hand, slowly shifts the network 
balance to over-inhibition; see Fig. 8.

Transition to slow oscillatory regimes  In most cases in our 
results, sufficiently large deviations of the network balance 
toward over-excitation transition the network activity to an 
oscillatory regime. The only exception we observed was the 
case where we increased the overall sparsity of the network 
connectivity, which resulted in hyper-excited yet stable non-
oscillatory states of network activity. In all cases, the emerg-
ing oscillations are slow, with their frequency being in the 
delta band. In particular, network oscillations emerging due 
to a reduction in the inhibitory proportion of the total net-
work population or in the decay time constant of inhibitory 
synapses, as well as those emerging due to higher density of 
recurrent inhibitory-to-inhibitory connectivity, are of high 
amplitude; see Figs. 3–5, 6, 8, and 9. High-amplitude delta 
oscillations are strongly correlated with loss of conscious-
ness, and are frequently observed in states such as coma, 
anaesthesia, generalized epileptic seizures, and slow wave 
sleep (Frohlich et al., 2021; Gillary & Niebur, 2016). There-
fore, our results suggest that transitions to slow oscillatory 
regimes due to shifts in the balance of excitation and inhi-
bition—if occurred in a sufficiently large number of local 
cortical networks across the neocortex—may correspond to 
a critical state transition in the brain to a state of diminished 
consciousness.

Criticality of the inhibitory synaptic conductances and the 
inhibitory proportion of neurons  The baseline values for 
inhibitory synaptic decay time constants, and for the ratio 
between the number of inhibitory neurons and the total number 
of neurons, are critical values for network stability. At such val-
ues, the network is in the well-balanced state as characterized 
above. However, relatively small reductions in these values 
result in a transition of network activity to a slow oscillatory 
regime; see Figs. 3 and 6. This, in particular, suggests that the 
typical value of the inhibitory proportion of neurons in the 
network or, equivalently, the typical ratio between the number 
of inhibitory and excitatory neurons, is almost optimal. This 

optimality is in the sense that a larger inhibitory proportion 
results in redundant inhibition and a less excitable network, 
and a slightly smaller inhibitory proportion results in a phase 
transition and, possibly, loss of functionality. Therefore, the 
number of inhibitory neurons, relative to the number of excita-
tory neurons, appears to be nearly at the minimum number 
required to safely stabilize the overall excitatory activity 
under normal conditions. This optimal value, however, is in 
direct correspondence with the value of inhibitory synaptic 
decay time constants. A larger number of inhibitory neurons 
is required for network stability if inhibitory synapses decay 
faster, and a smaller number of inhibitory neurons can main-
tain the stability of the network if inhibitory synaptic events 
last longer; see Fig. 7a.

Criticality of the density of inhibitory‑to‑inhibitory  
connectivity  The density of recurrent inhibitory-to-inhibitory  
connectivity, relative to the density of other types of local 
cortical connectivity, is a crucial factor both in controlling 
the level of inhibitory activity in the network and in stabiliz-
ing the excitatory activity. Our results show that the baseline 
value for the probability of such recurrent inhibitory connec-
tivity is critical. A moderately lower density of inhibitory-to-
inhibitory connectivity results in a rather uncontrolled rise in 
inhibitory activity, which moves the network balance toward 
hyper-inhibition and yields a non-excitable network. On the 
contrary, a slight increase in the density of such recurrent 
inhibitory connectivity results in a sharp change in the bal-
ance of excitation and inhibition toward over-excitation and, 
subsequently, emergence of high-amplitude delta oscilla-
tions; see Fig. 9.

Robustness of network stability to changes in quantal  
conductances  The stability of the network in our results is 
fairly robust to changes in synaptic quantal conductances. 
That is, only a significantly large reduction in the value of 
inhibitory quantal conductances, or a significantly large 
increase in the value of excitatory quantal conductances, 
can destabilize the network’s equilibrium through a Hopf 
bifurcation; see Fig. 4. This is in fact an expedient property 
for the functionality of the network. The values of synaptic 
quantal conductances are subject to dynamic changes due to 
plasticity of the synapses, which is essential in learning and 
memory. The network would otherwise be totally dysfunc-
tional if it could be destabilized by such level of synaptic 
plasticity. This robustness of the network stability to changes 
in synaptic quantal conductances further allows for synaptic 
plasticity to play a key role in fine-tuning of the excitation-
inhibition balance (Froemke, 2015; Vogels et al., 2011;  
Hennequin et al., 2017; Sprekeler, 2017; He et al., 2016).

Joint effects of synaptic and structural parameters  Balance 
of excitation and inhibition is established by integrated 
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contributions of multiple physiological and anatomical fac-
tors. We mostly analyzed the effects of these factors sepa-
rately. However, our limited results on the joint effect of 
synaptic parameters and the relative size of the inhibitory 
population particularly suggest that the high-amplitude delta 
oscillations that emerge in a local cortical network due to 
a reduced number of inhibitory neurons can be effectively 
suppressed by a reasonable amount of increase in the decay 
time constant or reversal potential of the inhibitory synapses, 
which restores the network’s stability by transitioning its 
dynamics through a Hopf bifurcation; see Fig. 7.

Instantaneous correlation of excitation and inhibition  Besides 
our extensive investigation of the overall excitation-inhibition  
balance through analyzing the long-term solutions of the 
mean-field model, we also studied the instantaneous correla-
tion between the spontaneous excitatory and inhibitory activity 
in a network, using both the mean-field model and the spiking 
neuronal network model. Our results reveal a tight instan-
taneous correlation between mean excitatory and inhibitory 
firing rates, with an average time lag of less than four millisec-
ond—in both the baseline balanced and the oscillatory states; 
see Figs. 10 and 11. The presence of such tight correlation is 
consistent with some experimental observations, which have 
confirmed tightly correlated temporal variations in the activity 
of excitatory and inhibitory neurons in a balanced state, with 
a time lag of only a few millisecond between them (Okun & 
Lampl, 2008; Dehghani et al., 2016; Atallah & Scanziani,  
2009; Bhatia et al., 2019; Denève & Machens, 2016). In our 
simulations, on average, the mean spontaneous firing activ-
ity of inhibitory neurons leads that of the excitatory neurons 
by a fraction of millisecond, which is also reported in some 
other computational studies (Compte et al., 2003). However, 
it should be noted that some experimental studies report 
that inhibitory activities lag a few millisecond behind the 
excitatory activity, especially for evoked activities (Okun 
& Lampl, 2008; Dehghani et al., 2016). The seeming dis-
crepancy, however, is likely because the sign of the time lag 
between the correlated mean activities can depend on the 
physical quantities measured (e.g., firing rates, postsynaptic 
potentials, postsynaptic currents, etc.,) specific distributions 
and timing of external inputs to each of the inhibitory and 
excitatory populations, and the relative level of the DC com-
ponent of the measured inhibitory and excitatory activity. In 
our simulations, we provided evenly distributed background 
excitatory spikes at a constant average rate to both popula-
tions, and we computed cross-correlations after removal of the 
DC component of the mean firing rates. Moreover, computing 
the cross-correlation between the excitatory and inhibitory 
mean membrane potentials obtained in our simulations—
instead of the cross-correlation shown in Fig. 10 between the 
excitatory and inhibitory mean firing rates—shows a time lag 
of −0.025 ± 1.29 ms between the membrane potentials at the 

baseline state, and a time lag of −0.55 ± 1.17 ms at the oscil-
latory state. This implies that the mean inhibitory membrane 
potential lags slightly behind the excitatory potential, a result 
consistent with experimental observations.

Insufficiency of tight activity correlation for inferring normal 
balance  The tight instantaneous correlation between spon-
taneous excitatory and inhibitory activities is maintained at 
different levels of excitation-inhibition balance in our simula-
tions, both in a network operating near a stable equilibrium, 
and in a network that has transitioned to a slowly-oscillating 
(-bursting) regime; see Figs. 10 and 11. The presence of such 
a tight temporal correlation has been confirmed experimen-
tally at different dynamic states of spontaneous, evoked, and 
oscillatory network activity (Dehghani et al., 2016; Okun & 
Lampl, 2008; Atallah & Scanziani, 2009; Isaacson & Scanzi-
ani, 2011). However, the functionality of a cortical network, 
and its overall level of excitation-inhibition balance, can 
change substantially at these different states. For example, 
the presence of high-amplitude delta oscillations in a network 
can be associated with a state of diminished consciousness, a 
state functionally distinctive from the alert state. Moreover, 
the level of overall excitation-inhibition balance in a network, 
when the network is operating at different conditions, can 
deviate from its normal dynamic state, either toward more 
inhibition or toward more excitation. Importantly, such devia-
tions do not necessarily reflect on the instantaneous corre-
lation between excitatory and inhibitory activities. There-
fore, we argue that a tight correlation between the temporal 
recordings of excitatory and inhibitory neuronal activities 
in a network is not a sufficiently strong evidence for infer-
ring a functional balance of excitation and inhibition in the 
network. As we discussed above, our results suggest that the 
ratio between mean excitatory and inhibitory synaptic con-
ductances is a more reliable measure of the level of overall 
excitation-inhibition balance in a local cortical network, as 
it continuously quantifies the amount of deviations from a 
normally balanced state.

Reliability of the predictions  The results we presented in this 
paper and the key observations we summarized above were 
predominantly obtained using a mean-field model, which nat-
urally suffers from inaccuracies due to simplifying assump-
tions. However, the model is simple and yet maintains key 
biological details. This allowed us the capacity to fairly com-
prehensively investigate the contributions of various factors 
in the balance of excitation and inhibition in a local cortical 
network. Performing such an extensive study experimentally, 
or using detailed biological models, would be rather imprac-
tical. To test the reliability of the predictions made based 
on the mean-field model, we performed sample studies for 
the key predictions of our mean-field analyses using a more 
detailed framework of a spiking network; See Fig. 11 and 
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Figs. S1–S6 in the supplementary file (Online Resource). 
The close agreement between the results we obtained from 
this spiking network and those predicted based on the mean-
field model—which were also consistent with the spiking 
activity observed in in vitro experiments and in in silico com-
putations of a detailed neocortical microcircuitry (Markram 
et al., 2015, Fig. 12)—is promising. Hence, we anticipate 
that the observations we made in this paper can inform future 
experimental and theoretical studies on understanding the 
homeostatic mechanisms involved in regulation of the exci-
tation-inhibition balance, and on identifying the pathologi-
cal causes of short-term and long-term disturbances in this 
essential operating condition of local cortical networks.
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