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Abstract
Natural selection is not the only mechanism that promotes adaptation of an organism
to its environment. Another mechanism is matching habitat choice, in which indi-
viduals sense and disperse toward habitat best suited to their phenotype. This can in
principle facilitate rapid adaptation, enhance range expansion, andpromote genetic dif-
ferentiation, reproductive isolation, and speciation. However, empirical evidence that
confirms the evolution of matching habitat choice in nature is limited. Here we obtain
theoretical evidence that phenotype-optimal dispersal, a particular form of match-
ing habitat choice, is likely to evolve only in the presence of a steep environmental
gradient. Such a gradient may be steeper than the gradient the majority of species
typically experience in nature, adding to the collection of possible explanations for
the scarcity of evidence for matching habitat choice. We draw this conclusion from
numerical solutions of a system of deterministic partial differential equations for a
population’s density along with the mean and variance of a fitness-related quantitative
phenotypic trait such as body size. In steep gradients, we find that phenotype-optimal
dispersal facilitates rapid adaptation on single-generation time scales, reduces within-
population trait variation, increases range expansion speed, and enhances the chance
of survival in rapidly changing environments. Moreover, it creates a directed gene
flow that compensates for the maladaptive core-to-edge effects of random gene flow
caused by random movements. These results suggest that adaptive gene flow to range
margins, together with substantially reduced trait variation at central populations, may
be hallmarks of phenotype-optimal dispersal in natural populations. Further, slowly-
growing species under strong natural selection may particularly benefit from evolving
phenotype-optimal dispersal.
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1 Introduction

Aspecies’ range evolves through complex eco-evolutionary processes, the understand-
ing of which is crucial for predicting species’ response to climate change, informing
conservation efforts for preserving biodiversity, and developing strategies for control-
ling invasive species (MacArthur 1972; Gaston 2003; Brown et al. 1996; Hoffmann
and Blows 1994; Kirkpatrick and Barton 1997; Pulliam 2000; Keitt et al. 2001; Sexton
et al. 2009; Bridle and Vines 2007; Miller et al. 2020; Angert et al. 2020; Ponchon
and Travis 2022; Rafajlović et al. 2022; Holt and Keitt 2005; Godsoe et al. 2017;
Louthan et al. 2015; Fronhofer and Altermatt 2015; Case et al. 2005; Duckworth and
Badyaev 2007; Haddad et al. 2015; Shirani and Miller 2022). Dispersal is one of the
key ecological factors involved in determining a species’ range. Since dispersal creates
gene flow, it affects the spatial dynamics of genetic variance and local adaptation, as
well as population dynamic measures such as range expansion rates (Slatkin 1985,
1987; Holt and Gomulkiewicz 1997; Kirkpatrick and Barton 1997; Gomulkiewicz
et al. 1999; Bowler and Benton 2005; Ronce 2007; Bonte et al. 2012; Baguette et al.
2013; Jacob et al. 2015; Kawecki and Ebert 2004; Okubo and Levin 2001; Pellerin
et al. 2019).

The simplest types of dispersal, including the archetype of diffusive spread, are in
theory independent of individual, population, and environmental characteristics (Lowe
and McPeek 2014). In general, random dispersal of individuals to other habitat loca-
tions irrespective of their genotypes imposes amigration load on the population’smean
fitness (Edelaar and Bolnick 2012; Bolnick and Otto 2013; Lenormand 2002; Bonte
et al. 2012). By contrast, a population’s fitness increases, most generally, when its indi-
viduals evolve adaptive dispersal strategies based on their environment structure, their
own characteristics, and their intra- and interspecific interactions (Levins 1963;Bowler
and Benton 2005; Cote et al. 2017; Edelaar and Bolnick 2012; Saastamoinen et al.
2018; Bonte et al. 2012; Clobert et al. 2009; Travis et al. 2012; Baguette et al. 2013;
Baines et al. 2019; Lustenhouwer et al. 2023; Ronce 2007; Holt 1985, 1987; Jaenike
and Holt 1991; Rausher 1984). Such convoluted evolution of dispersal—as a com-
plex multi-dimensional phenotype comprising of different components (propensity to
disperse, distance and direction of movements, and settlement choice (Saastamoinen
et al. 2018))—is driven by the balance between the cost incurred at each stage of
dispersal and the overall benefit acquired from dispersal (Bonte et al. 2012; Bowler
and Benton 2005; Cote et al. 2017; Garant et al. 2007; Rosenzweig 1981).

Empirical evidence in a variety of species confirms that individuals often bias
their dispersal towards preferred habitat locations (Holt 1987; Fretwell 1972; Ronce
2007; Bolnick and Otto 2013; Cote et al. 2017; Jacob et al. 2015; Armsworth and
Roughgarden 2008; Rice and Salt 1990; Lowe andMcPeek 2014; Pellerin et al. 2019).
To carry out suchfitness-associated dispersal, individuals of such speciesmust perceive
their internal phenotypic traits, andmust efficiently orient their movements by actively
using different sources of information, such as abiotic cues, landscape landmarks, and
presence and behavior of conspecifics. For instance, nocturnal snakes can sense the
temperature and physical structure of rocks to move to thermally preferable habitats
(Clobert et al. 2009; Ponchon and Travis 2022; Bowler and Benton 2005).
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Here, we propose and numerically study a deterministic model of a species’ range
evolution under a fairly idealized habitat-matching strategy. The dispersal strategy
that we study has been hypothesized to have substantial and distinctive effects on
species evolutionary rangedynamics (Edelaar et al. 2008).Wedemonstrate such effects
through numerical simulations and identify conditions under which this adaptive dis-
persal strategy will be sufficiently beneficial to evolve.

1.1 Matching Habitat Choice: An Adaptive Dispersal Strategy

In the most idealized version of adaptive dispersal, individuals can perceive all com-
ponents of their absolute fitness and are able to move freely. Therefore, they can
climb local fitness gradients and achieve their maximum expected fitness (Holt 1985,
1987; Fretwell 1972; Rosenzweig 1981; Ruxton and Rohani 1999; Armsworth and
Roughgarden 2005, 2008; Armsworth 2009; Ravigné et al. 2009). However, acquiring
information about all major components of fitness is infeasible. In a still idealized but
more realistic conception, dispersing individuals move toward habitat that is best for
their fitness-related phenotypes. For example, medium ground finches with deeper
bills, which can crack larger seeds, tend to settle in areas richer in large-seeded plants
to increase their food intake (Edelaar and Bolnick 2019). Therefore, with this type
of phenotype-dependent adaptive dispersal—which is often referred to as matching
habitat choice (Edelaar et al. 2008; Ravigné et al. 2004)—the expected performance
of the individuals is maximized.

Although themaximizedperformanceundermatchinghabitat choice is also likely to
lead to a considerable increase in the individuals’ fitness (Edelaar andBolnick 2019)—
due to the presumed correlation between individuals’ phenotype and fitness—it is
worth clarifying the difference betweenmatchinghabitat choice (as phenotype-optimal
dispersal) and fitness-optimal dispersal. Matching habitat choice is a phenotype-
environment matching strategy that can involve following an environmental gradient
in optimum phenotype. This is not necessarily the same as following the gradient
in optimal (maximum) fitness. In general, as we described above, matching habitat
choice is often conceptualized as a “performance”-maximizing but not necessarily a
“fitness”-maximizing strategy. For example, grasshoppers choosing a habitat based on
a match between their color and the thermal radiation of the habitat are not necessarily
maximizing their fitness by doing so. In fact, many factors affecting population fitness,
such as resource availability, mating success, fecundity, and importantly, competition
do not directly contribute to adopting a matching habitat choice strategy.

Although strong evidence for matching habitat choice in nature is still limited, a
growingnumber of experimental and empirical studies have identified it in diverse taxa.
For instance, using microcosms of a ciliate species which shows genetic variability
in performance along a thermal gradient, Jacob et al. (2017) have experimentally
shown that local adaptation to the upper margin of the species’ thermal niche is
favored by dispersal with matching habitat choice, whereas it is hindered under ran-
dom dispersal. Similarly, in a semi-natural warming experiment with a model species
of reptiles, Bestion et al. (2015) have shown that individuals disperse to warmer
or cooler habitats based on their preferred temperature. In another study, Camacho
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et al. (2020) performed a color manipulation experiment on grasshoppers to test for
camouflage-based background matching in an urban mosaic of dark and pale pave-
ments. They found that black-painted grasshoppers mostly chose to settle in dark
asphalt, whereas white-painted ones chose pale pavement—the same matching sub-
strate choice behavior observed naturally in unmanipulatedmorphs. A similar study by
Karpestam et al. (2012) on color-manipulated pygmy grasshoppers over a solar radi-
ation mosaic demonstrated that black-painted individuals tended to reside in habitats
with less radiation, and white-painted females had more hatchlings than black-painted
ones in increased radiation treatments. Color-dependent habitat choice has also been
identified in dark and pale barn owls (Dreiss et al. 2012). For a species of nomadic
crossbill bird, matching habitat choice has been proposed as a contributor to rapid
diversification of ecotypes; this hypothesis was supported by mark-recapture data
(Benkman 2017).

1.2 Eco-evolutionary Impacts of Matching Habitat Choice

With matching habitat choice, individuals sort themselves across the environment to
minimize their phenotype-environment mismatch. This means that, matching habitat
choice is in fact an adaptation mechanism that operates at the individual level and,
in principle, results in rapid population adaptation on within-generation timescales—
that is, a strongmatch betweenmean population phenotype and environment optimum
phenotype can occur within one generation time. This mode of rapid adaptation is
essentially different from adaptation by natural selection, which operates at the popu-
lation level. Although, in essence, the process of adaptation by natural selection also
takes place within generations, plausible levels of natural selection often require many
generations to cause a significant level of mean population phenotype-environment
match. Importantly, with matching habitat choice, the preferential sorting across the
environment also leads to substantial inter-individual variability in the distance and
direction of dispersal, which creates specifically directed nonrandom gene flow in the
population (Edelaar and Bolnick 2019; Bolnick and Otto 2013; Edelaar and Bolnick
2012; Holt 1987; Endler 1977)

With these phenomena in mind, researchers have used verbal models and agent-
based simulations to explore the implications ofmatching habitat choice for ecological
and evolutionary dynamics. The most thoroughly developed part of the resulting the-
ory concerns the partitioning of genetic variance across space and its consequences.
Indeed, theory suggests that non-random (directed) gene flow induced by matching
habitat choice can compensate for, or even reverse, the homogenizing (maladaptive)
effects of gene flow caused by diffusive (random) dispersal. This effect can reduce
standing genetic variation within locally adapted subpopulations, while increasing
genetic divergence among subpopulations (Edelaar et al. 2008; Edelaar and Bolnick
2012, 2019; Jacob et al. 2015; Holt 1987; Bolnick and Otto 2013; Garant et al. 2005;
Jacob et al. 2017; Felsenstein 1976; Hedrick 1986; Kawecki and Ebert 2004; Cote
et al. 2017). At the metapopulation scale, the enhanced genetic differentiation in turn
can indirectly cause assortative mating by decreasing reproductive interactions among
local populations. The resulting reproductive isolation and phenotypic segregation can
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eventually lead to sympatric speciation and increased biodiversity (Maynard Smith
1966; Endler 1977; Holt 1987; Rice and Salt 1988, 1990; Rice and Hostert 1993;
Coyne 1992; Kirkpatrick and Ravigné 2002; Bolnick and Otto 2013; Nicolaus and
Edelaar 2018; Edelaar et al. 2008, 2023; Berner and Thibert-Plante 2015; Ravigné
et al. 2009. In addition, the adaptation promoted by phenotype-environment matching
can enhance species persistence under temporal climatic changes in the environment
(Pellerin et al. 2019; Edelaar and Bolnick 2019; Nicolaus and Edelaar 2018; Edelaar
and Bolnick 2012; Jacob et al. 2017; Bonte et al. 2012).

By contrast, predicting howmatching habitat choicewill influence the range dynam-
ics of a species in a heterogeneous environment is difficult. This is partly because under
matching habitat choice, increased local competition between phenotypically similar
individuals counterbalances the adaptive effects of directed gene flow on fitness. In
spatially structured populations, such interactions can be essentially different in cen-
tral versus marginal populations. Non-quantitative predictions of the consequences
of matching habitat choice on range dynamics can thus fail or mislead—even at the
basic level of indicating whether its effects are substantial enough to warrant atten-
tion. Rather, quantitative theory is needed for understanding the net effect of matching
habitat choice on adaptive evolution. For predicting such outcomes as the speed and
ultimate extent of range shifts, developing the theory is crucial.

1.3 PresentWork:When and HowMatching Habitat Choice Influences Species
Range Evolution

In the present work we propose and numerically study a deterministic partial differ-
ential equation (PDE) model for the spatiotemporal dynamics of the moments of a
fitness-related quantitative trait in the presence of matching habitat choice. The pre-
dictive benefit of our model is that it allows us to quantify the extent to whichmatching
habitat choice facilitates adaptation and speeds up range expansion. We model disper-
sal as a combination of diffusion (random dispersal) and a particular form of matching
habitat choice that we call phenotype-optimal dispersal. In the most idealized for-
malism of matching habitat choice, individuals are able to assess the entire available
habitat and move to the globally optimum location. We make the still idealized, but
more realistic, assumption that individuals can only locally assess their immediate sur-
rounding environment and direct their movement toward their maximally matching
neighborhood. Continuously repeating such assessments and movements, the individ-
uals eventually settle in a location which is the best compared with other locations
within their perceivable surroundings. We model this phenotype-optimal dispersal by
allowing the individuals to follow the direction of a gradient in environmental opti-
mum phenotype. Individuals who perceive both a phenotype-environment mismatch
and a non-zero environmental gradient move in the direction of the gradient, which
gives a maximal (local) decrease in their perceived mismatch. If the environmental
gradient is zero, or the individuals are not sensitive to it, then there will be no directed
dispersal in our model as all surrounding areas appear to be equally preferable to the
individuals.
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We aim to characterize conditions under which phenotype-optimal dispersal is
or is not sufficiently beneficial to evolve in nature. In order to do so, we use our
model to describe the effects of phenotype-optimal dispersal on population dynamics
measures such as expansion wave speed and equilibrium population density, as well as
evolutionary processes such as rates of local adaptation and phenotypic differentiation.
We focus on a continuous environment that varies in space but not in time. We also
explore scenarios with repeated abrupt environmental shifts or fragmented habitat. To
isolate the effects of matching habitat choice, we compare the outcomes of numerical
simulations including it with the outcomes of simulations that include only diffusive
dispersal.

We find that in shallow to moderate environmental gradients, phenotype-optimal
dispersal has only mild effects on invasion speeds and adaptation rates. By contrast,
it has several noteworthy effects in strong to extreme environmental gradients. There,
it substantially increases the rate and extent of local adaptation, especially at range
margins. It also reduces local phenotypic variance and increases the speed of range
expansions. However, it has little effect on equilibrium population densities even in the
case of a steep environmental gradient. Finally, we find that matching habitat choice
in this case can greatly enhance the range expansion capacity and improve the survival
prospects of a population under periodic environmental fluctuations.

2 Model Description

We base our model on our previous work (Shirani and Miller 2022), which was an
extension of the seminal works of Pease et al. (1989), Kirkpatrick and Barton (1997),
and Case and Taper (2000) and allowed us to study the adaptive range dynamics of a
community of interacting species under an environmental gradient. Since in the present
work we investigate the range evolution of a solitary species, we use a reduction of our
previous multi-species model to a single species case. We incorporate into the model
newcomponents that represent the effects of phenotype-optimal dispersal.Wedescribe
only those details of our previous work that are necessary for a clear description of
the new model. We refer the reader to our previous work (Shirani and Miller 2022)
for further details.

Before specifying our model equations, it is worth recognizing that they are rather
complex. This is because they include the contributions of three eco-evolutionary
processes not included in the seminal work of Kirkpatrick and Barton (1997). The first
of these is, of course, phenotype-optimal dispersal itself. The second is evolving trait
variance.We include this becausematching habitat choice is known to have substantial
impacts on trait variance, which our work is aimed to quantify. Moreover, it is known
that including the evolution of trait variance yields range dynamics very different from
what occurs when variance is (arbitrarily) held fixed as in the work of Kirkpatrick and
Barton (1997); see for example Barton (2001), Shirani and Miller (2022). The third
is phenotype-dependent competition. We include this because competition is widely
known as a determinant of range limits. We specifically make competition phenotype-
dependent so that we can quantitatively resolve possibly conflicting effects of dispersal
and competition when both depend on phenotype.
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We model the m-dimensional habitat of the species by an open rectangle � ⊂ R
m,

m ∈ {1, 2, 3}. Although in general the habitat can be three-dimensional, in this study
we only consider one- and two-dimensional habitats. We model the adaptive range
dynamics of the species at each location x = (x1, . . . , xm) ∈ � and time t ∈ [0, T ],
where xi , i ∈ {1, . . . ,m}, denotes the coordinate of the location x along the i th
dimension of the geographic space, and T > 0 denotes the evolution time horizon. For
this, we derive equations that govern the joint evolution of three population quantities:
n(x, t) denoting the population density of the species, q(x, t) denoting the mean value
of a fitness-related quantitative phenotypic trait within the population, and v(x, t)
denoting the intraspecific variance of the trait.

The derivation of the equations of themodel relies on a basic equation that specifies,
over a small interval of time, the variation in population density of individuals with
a quantitative phenotypic trait value p. To present this equation, we first denote by
φ(x, t, p) the relative frequency of phenotype value p ∈ R among all individuals of
the species’ population. In addition, we denote by g(x, t, p) the intrinsic1 growth rate
of the population of individuals with phenotype value p. This growth rate, as given
below by (5), includes a Lotka-Volterra model of intraspecific competition. We denote
by α(p, p′) the competition kernel that captures the strength of per capita effects
of individuals with phenotype p′ on the frequency of individuals with phenotype p.
Finally, we denote by ∂

(M)
t φ(x, t, p) the rate of mutational changes in the frequency

of phenotype p. The basic equation underlying the derivation of the model can then
be presented as

n(x, t + τ)φ(x, t + τ, p) − n(x, t)φ(x, t, p)

= τ div
(
D(x)∇x

(
n(x, t)φ(x, t, p)

))
(1a)

− τ div
(
A(x)n(x, t)φ(x, t, p)

( − ∇xθ(x, p)
))

(1b)

+ τg(x, t, p)n(x, t)φ(x, t, p) (1c)

+ τn(x, t)∂(M)
t φ(x, t, p), (1d)

where ∇x denotes the gradient with respect to x , and div denotes the divergence with
respect to x . In writing (1), we assume that the change in the population density of
individuals with phenotype p over a small time interval of τ → 0 results from the
contributions of four factors: diffusive (random) dispersal of individuals to and from
neighboring locations, modeled by (1a); directed (optimal) dispersal of individuals
in the direction that gives them maximum environmental match, modeled by (1b);
intrinsic population growth, modeled by (1c); and mutational changes in the relative
frequency of p, modeled by (1d). As defined in Table 1, parameter D denotes the
diffusion coefficient of the species’ random dispersal. Parameter A and the term−∇xθ

1 We use the term “intrinsic” growth rate for the logistic growth rate g(x, t, p), given by (5), to distinguish
this component of the population’s instantaneous growth rate in our model from the other components
contributed by dispersal and mutations. This makes our interpretation of the intrinsic growth rate slightly
different from an alternative definition that specifies it as the growth rate of the population as its density
goes to zero. In our model, this alternative definition is specified as the “maximum” intrinsic growth rate,
denoted by the parameter R in (5).
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Table 1 Definition and plausible range of values of the parameters of the model (10)–(12)

Parameter Definition Range Typical Unit

m Spatial dimension of the geographic space {1, 2, 3} 1, 2 —

D(x) Diffusion coefficient of the species’ random dispersal [0, 25]∗ 1∗ X2/T

A(x) Measure of the species’ propensity to disperse optimally [0, 10] 4 X2/T

K(x) Carrying capacity of the environment† (0, 10] 1 N/Xm

R(x) Maximum population growth rate of the species [0.1, 10] 2 1/T

V Variance of the species’ phenotype utilization distribution [0.25, 25] 4 Q2

S Measure of the strength of stabilizing selection [0, 2] 0.2 Q−2/T

U Rate of increase in trait variance due to mutation [0, 0.2] 0.02 Q2/T

Q(x) Optimal trait value for the environment [0, ∞) Linear‡ Q

‖∇xQ(x)‖Rm Magnitude of the gradient of the optimal trait [0, 10] 0.2 Q/X

∗When m > 1, the range of values specified for D(x) can be considered for each entry of D(x) ⊂ R
m×m.

Typically, D is assumed to be diagonal
†The carrying capacity K is defined as the maximum population density when individuals are strongly
competitive (generalist), that is, V 
 1. When V is not large, the resulting competitive release lets the
maximum population density exceed the value of K specified here
‡The typical value “Linear” specified for Q means that Q is typically considered to be a linear function of
x over �

Except for A(x), the range of parameter values and their choice of units are the same as those proposed by
Shirani and Miller (2022). Unless otherwise stated, the typical values given here are the values used in the
numerical studies of Sect. 4

in (1b) can be interpreted, respectively, as individuals’ propensity and individuals’
perceived force to disperse optimally. Further descriptions on these terms are provided
in Sect. 2.3 below.

Below, we first provide a list of key assumptions that we have made in writing (1)
and some other equations in the rest of the paper. We then give the formulation of the
species’ intrinsic growth rate g(x, t, p) in (1c), and describe in detail how we model
the optimal dispersal in (1b). The diffusion term (1a) that models species’ random
dispersal is standard, and the formulation for the effect of mutational changes in (1d),
based onAssumption (viii) below, is given in SectionA.3 of our previouswork (Shirani
and Miller 2022).

2.1 Model Assumptions

To derive the equations of our model, we make the following major assumptions on
the populations’ dispersal and reproduction, as well as the elements of the intrinsic
growth rate and the intraspecific competition kernel:

(i) Random dispersal of the individuals in the habitat is diffusive.
(ii) An individual’s environmental potential energy for optimal dispersal is pro-

portional to the square of the difference between its phenotype value and the
environment’s optimum phenotype. This assumption is crucial for the quantita-
tive outcomes of the model, as explained in Sect. 2.3.
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(iii) Nonlinear environmental selection for an optimal phenotype Q is stabilizing for
all x ∈ �. The optimal phenotype can vary over space and time.

(iv) The frequency of phenotype values within the species is normally distributed at
each occupied point in space at all times. That is,

φ(x, t, p) := 1√
2πv(x, t)

exp

(
− (p − q(x, t))2

2 v(x, t)

)
, x ∈ �, t ∈ [0, T ]. (2)

(v) In the absence of selection, the intrinsic growth rate of the individuals with
phenotype p follows a logistic growth (see (5a)) with phenotype-dependent
competition. The carrying capacity and maximum growth rate of the individuals
are independent of their phenotype.

(vi) Environmental resources vary continuously along a resource axis. After identify-
ing the resource axis with a phenotype axis, as described in Remark 2 below, the
phenotype utilization distribution for an individual with phenotype p is assumed
to be normal, given by

ψp( p̃) := 1√
2πV

exp

(
− ( p̃ − p)2

2V

)
, (3)

where V denotes the variance of phenotype utilization by every individuals of
the species.

(vii) The strength of intraspecific competition between individuals is determined by
the overlap between their phenotype utilization curves, which results in the
competition kernel

α(p, p′) = exp

(
− (p − p′)2

4V

)
. (4)

The details of the derivation of this kernel function are available in Sections A.2
and A.4 of our previous work (Shirani and Miller 2022). Here, we only consider
symmetric competition between the individuals of different phenotypes, that is,
we set κ = 0 in the formulation given in our previous work.

(viii) The probability of mutational changes from one phenotype p to another pheno-
type p′ depends on the difference δ p = p− p′ between the phenotypes. Letting
ν(δ p) denote the probability density of such mutational changes, we further
assume that ν follows a distribution with constant zero mean and constant vari-
ance Vm. See Section A.3 of our previous work (Shirani and Miller 2022) for
the formulation of our model of mutational changes.

Remark 1 (Reproduction types) For an isolated population, in the absence of
dispersal, competition, selection, and mutation, the phenotype density evolution
equation (1) with the intrinsic growth rate (5) gives ∂t

(
n(x, t)φ(x, t, p)

) =
R(x)

(
n(x, t)φ(x, t, p)

)
, where ∂t denotes the partial derivative with respect to t . This

means that, under our assumption that the maximum growth rate R is phenotype-
independent (Assumption (v)), the intrinsic rate of change in the density of an isolated
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population of individuals with phenotype p depends only on the population density of
individuals with the same phenotype p. This condition fits in trivially with an asexual
reproduction system. However, within the context of this work, we can speculatively
argue that the predictions of our model are approximately valid even for the range
evolution of a sexually reproducing species, under certain conditions. Ascertaining
our arguments will require direct incorporation of individuals’ mating into the model.

In a basic infinitesimal model for a large population, the phenotype value of the
offspring of parents with phenotypes p and p∗ follows a normal distributionwithmean
(p + p∗)/2 and segregation (within-family) variance vs (Barton et al. 2017). Without
selection, the population trait variance v of a fully panmictic (randomly mating) iso-
lated population reaches the equilibrium value v = 2vs. Stabilizing selection reduces
this equilibrium variance. That is, for a randomly-mating population under selection
we have v < 2vs (Barton et al. 2017, Eq. (6)). Reproduction through assortative mat-
ing can substantially increase the equilibrium trait variance, that is, v 
 2vs. In the
absence of selection, very strong cost-free assortment results in an indefinite increase
in trait variance (Barton et al. 2017). In the real world, however, selection prevents
divergence of the trait variance (Polechová and Barton 2005, Eq. (7)).

If the species represented by our model reproduces sexually through strong assorta-
tivemating (p ≈ p∗), then the infinitesimalmodel predicts that the average segregation
variance will be much smaller than the total trait variance over the entire population.
However, locally, at a given point x ∈ �, vs(x) can be comparable to v(x). Our present
work focuses on species range evolution in relatively steep environmental gradients,
implying that the trait variance will be dominantly maintained by gene flow. As we
show in the results presented in Sect. 4, the directed gene flow created by phenotype-
optimal dispersal substantially reduces within-population (local) trait variance. That
is, with strong phenotype-optimal dispersal, v(x) and hence vs(x) take small values
at every x ∈ �. Therefore, for an assortatively-mating population that disperses opti-
mally, we expect that the offsprings take the mid-parent value (p + p∗)/2 ≈ p with
fairly large confidence (small segregation variance). This means that the range evo-
lution of such a population should be essentially similar to the range evolution of an
asexual population that satisfies the assumption of our model trivially. We should note
that, as stated in the in Sect. 1.2, phenotype-optimal dispersal can indeed promote the
evolution of assortative mating.

The results of our model are also expected to be approximately valid for a panmictic
population with locally-mating individuals, that is, a population in which each individ-
ual mates randomly with nearby individuals without any phenotypic preference. With
local random mating the mid-parent phenotype values can be significantly different
from each parents’ phenotype, and the segregation variance vs(x) can be close to the
local trait variance, v(x) ≤ 2vs(x). Therefore, our reproduction assumption is not
directly satisfied for a panmictic population—unless the population trait variance is
heavily reduced by directed gene flow, so that all phenotypes concentrate close to the
mean value. However, the infinitesimal model states that with random mating the trait
distribution in the population converges to a normal distribution (Barton et al. 2017),
consistent with our assumption of normal phenotype distribution (Assumption (iv)) in
the presence of gene flow. Therefore, even though random mating does not meet our
reproduction assumption at the individual phenotype level, it should not substantially
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affect the population-level distribution of phenotypes (in particular, their mean and
variance) when themain source of phenotypic variation is gene flow. Knowing that our
model represents the populations at a mean-field level, with equations that govern only
the evolution of the mean and variance of the traits, we expect our results to essen-
tially remain valid even for a sexually-reproducing panmictic population, provided
that mating in the population takes place locally. ��

Remark 2 (Phenotype Utilization Distribution) The phenotype utilization distribution
function ψp( p̃) can be interpreted as a function that gives the probability density that
an individual with phenotype p will utilize a unit of resource that is expected to be
mostly utilized by (is most favorable for) an individual with phenotype p̃. To see this
more precisely, we assume (as in Assumption (vi)) that environmental resources vary
continuously along a resource axis parameterized by a variable r . Let ψp be a proba-
bility density function that denotes the resource utilization distribution of individuals
with phenotype p. That is, ψp(r) gives the probability density that an individual with
phenotype p obtains a unit of resource from a point r on the resource axis. It is then
convenient for our modeling purposes, and for trait-based niche conceptualizations
(Ackerly and Cornwell 2007; Violle and Jiang 2009), to assume that the resource axis
can be identified by the phenotype axis (Roughgarden 1979, Equ. (24.51)). This means
that, we assume there exits a smooth one-to-one map I : p �→ rp that identifies the
r -axis with the p-axis. That is, for every r ∈ R, there exist a unique phenotype p̃ ∈ R

such that r = r p̃ = I ( p̃) ≡ p̃. For instance, r p̃ can be the point on the r -axis from
which individuals of phenotype p̃ obtain their average amount of resources. Following
this identification, the resource utilization distributions ψp(r) are translated into phe-
notype utilization distributions ψp( p̃), which we assume to take the Gaussian form
(3) with utilization variance V. This resource-phenotype identification can be concep-
tualized to represent the empirical relationship between functional response traits and
environments—inspiring our choice of optimal dispersal potential energy function (6)
described below. In a trait-based niche quantification framework (Ackerly and Corn-
well 2007; Violle and Jiang 2009) the variance of phenotype utilization distributions
can be used to quantify the within-phenotype component of a species’ niche breadth.
Further details can be found in Appendix A.2 and Section 3.2 of our previous work
(Shirani and Miller 2022). ��

2.2 Intrinsic Growth Rate

In the absence of dispersal and genetic mutations, the local population dynamics of the
species is determined by its intrinsic population growth, which we model as (Shirani
and Miller 2022, Eq. (17)),

g(x, t, p) :=R(x)

(
1 − 1

K(x)
n(x, t)

∫

R

α(p, p′)φ(x, t, p′)dp′
)

(5a)

− S

2
(p − Q(x))2, (5b)
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where R denotes the maximum growth rate of the species, K denotes the carrying
capacity of the environment, S denotes the strength of stabilizing selection, and Q
denotes the environment’s optimal trait value. The phenotype distribution φ and the
competition kernel α are given by (2) and (4), respectively. The convolution term in
the logistic growth rate (5a) captures the effect of intraspecific phenotypic competition
on the frequency of phenotype p. The quadratic term (5b) incorporates the effects of
directional and stabilizing selection on individuals with phenotype p, by penalizing
the phenotypes that are far from the optimal phenotype Q(x).

2.3 Phenotype-Optimal Dispersal

We model the species’ phenotype- and environment-dependent optimal dispersal by
the advection term (1b). The parameter A is analogous to the mobility parameter that
is often used in drift-diffusion models of particles flowing in a fluid. In our model, we
can reasonably interpret A as a simplified model of individuals’ propensity to disperse
optimally. The evolution of a species’ dispersal propensity depends on many factors,
such as costs and benefits of different stages of dispersal, environmental conditions,
and frequency-dependent eco-evolutionary processes (Bonte et al. 2012; Clobert et al.
2009).Moreover, the dispersal propensity of the individuals of a species is often plastic,
and can change on an ecological timescale. We do not include the evolution of the
species’ optimal dispersal propensity in ourmodel though, since quantitative estimates
of dispersal propensity that allow for a sufficiently meaningful approximation of its
evolutionary dynamics are currently lacking in the literature. Instead, we perform our
studies with different values of A to explore whether different degrees of dispersal
propensity will be sufficiently beneficial to evolve in a species. Although the equations
of our model allow for A to be dependent on space, in the results we present in this
work we assume A to be constant in space and time.

The term −∇xθ(x, p) in (1b) is analogous to the force acting on particles in drift-
diffusion models, derived from an external potential energy θ(x, p). In our model,
θ(x, p) is interpreted as individuals’ dispersal potential energy (for directed disper-
sal), which depends on both the phenotype p of each individual and the (perceived)
environmental trait optimum. As a result, the advective optimal dispersal (1b) in our
model represents an informed dispersal strategy that is both phenotype-dependent
(dependence on p) and condition-dependent (dependence on Q(x)), as defined by
Clobert et al. (2009). In this informed dispersal context, the phenotype value of an
individual is an internal state of the individual, developed by the individual’s self per-
ception. The environmental trait optimum and its gradient, as described below, are
external factors that can initiate and direct the species’ optimal dispersal through the
evolution of sensory and cognitive processing mechanisms in the individuals.

To fix ideas, we consider the following simplified yet meaningful model for the
dispersal potential energy functionof an individualwith phenotype p at habitat location
x ,

θ(x, p) :=
(
p − Q(x)

)2
2V

. (6)
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Note that this potential energy function can be obtained as a first-order approximation2

of the function 1−√
2πVψp(Q(x)), whereψp is the phenotype utilization distribution

(3). That is,

1 − √
2πVψp(Q(x)) = 1 − exp

(
−

(
p − Q(x)

)2
2V

)

≈ 1 −
(
1 −

(
p − Q(x)

)2
2V

)
=

(
p − Q(x)

)2
2V

= θ(x, p).

This approximation implies that the dispersal potential energy for an individual with
phenotype p can be interpreted as how well or poorly the individual can utilize the
environment’s optimal phenotype3 at its current location. If the individual’s pheno-
type matches the optimum phenotype perfectly, then there is no phenotypically and
environmentally induced force on the individual to disperse. If the individual’s phe-
notype differs significantly from the environment’s optimum—measured relative to
the species’ phenotype utilization variance V—then the individual perceives a high
potential energy to disperse to habitat locations of better quality that match its phe-
notype. Yet, a high dispersal potential energy θ(x, p) does not generate a significant
dispersal force−∇xθ(x, p) on the individual, unless a sufficiently large gradient in the
dispersal potential energy is perceived by the individual. As the following discussion
shows, such a gradient is present if the environmental gradient ∇xQ is sufficiently
steep and the individual is sufficiently sensitive to it. In this case, the individual enjoys
a considerably better-matching habitat after carrying out the directed dispersal.

The dispersal potential energy (6) gives the optimal dispersal force term −∇xθ

used in (1b) as

− ∇xθ(x, p) = p − Q(x)

V
∇xQ(x). (7)

If the magnitude of the environmental gradient ‖∇xQ(x)‖Rm is zero (where ‖.‖Rm

denotes the Euclidean norm in R
m) or is perceived as equal to zero due to insensitivity

of an individual to the gradient, then the perceived directed dispersal force on the
individual is zero—regardless of the presence of a phenotype-environment mismatch
p �= Q(x). In this case the individual only disperses randomly, due to the diffusion term
(1a). If ‖∇xQ(x)‖Rm > 0, then an individual whose phenotype p does not perfectly

2 We note thatψp itself (instead of its first-order approximation) does not serve as a fully meaningful scalar
potential energy function. Setting θ(x, p) = −√

2πVψp(Q(x)) would induce a dispersal force −∇x θ as

−∇x θ(p, x) = √
2πV∇xψp(Q(x)) = p − Q(x)

V
exp

(
−

(
p − Q(x)

)2
2V

)
∇xQ(x).

Therefore,when phenotype-environmentmismatch |p−Q(x)
∣∣ → ∞, the dispersal force−∇x θ(p, x) → 0,

which does not make sense.
3 Note that, as stated in Assumption (vi) and described in Remark 2, in writing the phenotype utilization
distribution (3) we assume an identification between the resource axis and the phenotype axis.
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match the optimum phenotype will perceive a force “pushing” it to disperse optimally.
If p > Q(x), the optimal dispersalwill be in the direction of the environmental gradient
so that the individual disperses to habitat locations with larger optimum phenotype
values, which give the individual a better phenotype-environment match. Similarly, if
p < Q(x), the optimal match will be achieved by the individual through dispersal in
the opposite direction of the environmental gradient. Although not possessing a true
interpretation as a potential—unlike the dispersal potential energy θ(x, p) given by
(6), which indeed induces a conservative force −∇xθ in the advection term (1b)—for
ease of reference we refer to the term

(
p − Q

)
/V in (7) as the phenotypic potential

for optimal dispersal.
A biological organism may not develop a perception of the dispersal force (7) in its

exact mathematical sense. The phenotypic potential (p−Q)/V and the environmental
gradient∇xQare perceived only approximately, and to the level needed for individuals’
decision and plan for dispersal. However, to make the derivation of the equations of
our model feasible, we assume that the perceived valued of the phenotypic potential
is equal to its exact mathematical value (p − Q)/V; see Remark 4 below. Yet, our
derivations allow for a more reasonable perception of the environmental gradient,
which we denote by ∇̃xQ and describe in Remark 3 below.

Replacing the actual environmental gradient in (7) with its perceived value, we then
write the individual’s perceived dispersal force for phenotype-optimal dispersal as:

− ∇̃xθ(x, p) = p − Q(x)

V
∇̃xQ(x), (8)

which is the dispersal force we substitute into (1b) to derive the equations of our model
((10)–(12)) given in Sect. 2.4.

Remark 3 (Perceived environmental gradient) The magnitude of the dispersal force
perceived by an individual is unlikely to remain directly proportional to the magnitude
of the environmental gradient ‖∇xQ(x)‖Rm when the gradient becomes increasingly
steep. When there exists a phenotype-environment mismatch p �= Q, a sufficiently
steep environmental gradient should be enough to generate a maximal force on the
individual to disperse. Developing proportional sensitivity to steeper gradients would
then be unnecessarily costly for the individual, as it would not change the individual’s
dispersal behavior any further. To approximately incorporate such information satu-
ration in the individual’s perception of the environmental gradient, we replace ∇xQ
in (7) by the following perceived gradient:

∇̃xQ(x) := 

 + ‖∇xQ(x)‖Rm
∇xQ(x), x ∈ �δ, (9)

where  is a constant that denotes the maximum perceived magnitude of the environ-
mental grtadient. When ‖∇xQ(x)‖Rm is much smaller than , the perceived gradient
approximately equals the actual gradient. When ‖∇xQ(x)‖Rm is much larger than ,
themagnitude of the perceived gradient approximately saturates to themaximumvalue
, but its direction will always be the same as the direction of the actual gradient. The
smaller habitat �δ specified in (9) includes all points of � except those that are closer
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than a constant δ to the boundary of �. This is to avoid the complexity of exposition
here (due to the indefiniteness of the gradient at boundary points) and to allow for
simpler boundary conditions. In Appendix A, we provide details on how to smoothly
extend ∇̃xQ(x) in (9) to the whole habitat�, based on the assumption that individuals
can sense the habitat boundary and avoid crossing it. Specifically, for the one- and
two-dimensional habitats that we simulate in this work, we use the definitions (21)
and (22) given in Appendix A for ∇̃xQ(x) over the entire habitat�. Denoting the units
of space and trait by X and Q, respectively, we assume in all numerical simulations that
the individuals can perceive the habitat boundary when they get as close as δ = 2X
to the boundary. Moreover, we set the maximum perceived gradient to be  = 1Q/X,
which still corresponds to a relatively steep environmental gradient, as we discussed
in Section 3.2 of our previous work (Shirani and Miller 2022). In our simulations, we
use the dispersal propensity parameter A as an adjustment parameter for the species’
total rate of optimal dispersal. ��

We note that the perceived gradient ∇̃xQ can also be interpreted, in some sense,
as the sensitivity of the individuals’ dispersal force to changes in habitat quality. In
nature, individuals of a species may develop a perception of the environmental gradi-
ent not only by directly sensing their environment’s conditions, but also by collecting
information through exploration (Armsworth and Roughgarden 2005; Selonen and
Hanski 2006) and collective behavior of their conspecifics. The diffusive movement
term (1a) that we have included in our model can additionally capture such exploratory
movements of the individuals for the purpose of gaining a better perception of their
environment’s gradient. Tracking the environmental gradient can also occur through
taxis, that is, in response to environmental stimuli (guides) that are strongly correlated
with gradient of the optimum trait. For instance, changes in temperature, chemical con-
centration, topography, wind strength and direction, water flow, or light intensity can
effectively canalize the movement of individuals in the direction of the environmental
gradient (Baguette et al. 2013).

Remark 4 (Perceived phenotypic potential) An individual with the ability to locate
and disperse to a matching habitat most likely can develop a reasonably accurate self-
assessment of the mismatch between its phenotype and the environmental optimum,
p − Q(x), or equivalently, a perception of the phenotypic potential (p − Q(x))/V at
every location x in the habitat. We can model the perceived value of the phenotypic
potential as a function f ((p−Q)/V). For example, f could reasonably be a saturation
function similar towhatwe considered for themagnitude of the environmental gradient
in Remark 3. However, the presence of such a nonlinear function of p in our model of
optimal dispersal makes the derivation of the final equations of the model infeasible,
or unnecessarily complicated. An alternative choice without over-complicating the
derivations would be in the form f ((p − Q)/V) = (p − Q̃(x))/V, where Q̃(x) =
h(Q(x)) gives the perceived value of the trait optimum as a function h of its actual
value. This particularly means that we assume the individual’s assessment of its own
phenotype is exact. Substituting this perceptionof the phenotypic potential for the exact
value (p − Q(x))/V in (8) would simply result in replacing Q(x) with its perception
Q̃(x) in the optimal dispersal terms (10b), (11e), and (12e) of the model equations
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(10)–(12) given in Sect. 2.4. However, since we assume the perception of p is exact
and it is likely that the ability to perceive the environmental optimumQ evolves jointly
with the self-perception of p, we choose to set Q̃(x) = Q(x) in all of our equations.
This means that throughout this work we always assume that the perception of the
phenotypic potential is exact. ��

2.4 Model Equations

The basic equation (1) and its components described above provide the ingredients
that we need for deriving the equations of our model for the joint evolution of a
species’ population density n(x, t) and the mean value q(x, t) and variance v(x, t) of
a quantitative fitness-related trait within the species’ population. Assumption (iv) is a
key assumption in developing our model, as it allows for an exact moment closure in
deriving the equations of trait mean and trait variance. In this section, we only present
the final equations of our model. The derivation of the equations is provided in detail
in Appendix B.

Before presenting the equations of the model, we note that the definitions of all
model parameters and their plausible ranges of values are given in Table 1. Note that
D(x) ∈ R

m×m, whereas the rest of the parameters are scalar-valued. Also, S, U, and
V are assumed to be constant throughout the habitat, whereas D, A, K, R, and Q can
be variable in space. Although their dependence on t is not explicitly shown in the
equations, all these model parameters can also vary in time. A discussion of the choice
of parameter units and their plausible values is provided in Sect. 2.5 below.

Now, letting ∂t denote the partial derivative with respect to t , our equation for the
evolution of the species’ population density n(x, t) for all x ∈ � and t ∈ [0, T ] is
given as

∂t n(x, t) = div (D(x)∇xn(x, t)) (10a)

− div

(
A(x)n(x, t)

q(x, t) − Q(x)

V
∇̃xQ(x)

)
(10b)

+
(
R(x) − R(x)

K(x)

√
V

v(x, t) + V
n(x, t)

−S

2

[(
q(x, t) − Q(x)

)2 + v(x, t)
])

n(x, t). (10c)

Further, letting 〈· , ·〉Rm denote the standard inner product in R
m, our equations for

the population’s trait mean q(x, t) and trait variance v(x, t) are

∂t q(x, t) = div (D(x)∇xq(x, t)) (11a)

+ 2 〈∇x log n(x, t) , D(x)∇xq(x, t)〉Rm (11b)

− div

(
A(x)

v(x, t)

V
∇̃xQ(x)

)
(11c)
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−
〈
∇x log n(x, t) , A(x)

v(x, t)

V
∇̃xQ(x)

〉

Rm
(11d)

−
〈
∇xq(x, t) , A(x)

q(x, t) − Q(x)

V
∇̃xQ(x)

〉

Rm
(11e)

− S
(
q(x, t) − Q(x)

)
v(x, t), (11f)

and

∂tv(x, t) = div(D(x)∇xv(x, t)) (12a)

+ 2 〈∇x log n(x, t) , D(x)∇xv(x, t)〉Rm (12b)

+ 2 〈∇xq(x, t) , D(x)∇xq(x, t)〉Rm (12c)

− 2

〈
∇xq(x, t) , A(x)

v(x, t)

V
∇̃xQ(x)

〉

Rm
(12d)

−
〈
∇xv(x, t) , A(x)

q(x, t) − Q(x)

V
∇̃xQ(x)

〉

Rm
(12e)

+ R(x)

K(x)

√
V

v(x, t) + V

n(x, t)v2(x, t)

2
(
v(x, t) + V

) − Sv2(x, t) + U. (12f)

For our simulations of a one-dimensional habitat� = (a, b), we assume no phenotype
flux through the habitat boundary. Since the perceived environmental gradient ∇̃xQ
given by (21) in Appendix A has no component normal to the boundary, the advection
term (1b) does not result in any phenotype flux through the boundary. Therefore, our
no-flux boundary assumption simply implies the homogeneous Neumann (reflecting)
boundary conditions

∂xn = 0, ∂xq = 0, ∂xv = 0, on {a, b} × [0, T ], (13)

which is the boundary condition we discussed in Remark 1 and Appendix A.5 of
our previous work (Shirani and Miller 2022). For the two-dimensional habitat � =
(a1, b1)× (a2, b2) that we simulate in this work, we set reflecting boundary condition
at boundary lines x1 = a1 and x1 = b1, and we assume that the habitat is extended
periodically in the x2-direction.

In comparison with the equations of the single-species model that we studied in
Section 4 of our previous work, the inclusion of the optimal dispersal strategy in the
present work results in the additional term (10b) in the equation for population density,
the terms (11c)–(11e) in the equation for trait mean, and the terms (12d) and (12e)
in the equation for trait variance. As a result, all quantitative measures of population
dynamics, such as population density, speed of range expansion, local adaptation
rates at both the range center (core) and range margins, asymmetric core-to-edge gene
flow, and the dynamics of intraspecific trait variance are expected to be affected by
individuals’ ability to disperse optimally to matching habitats. We demonstrate such
impacts under different evolutionary regimes in our computational studies presented
in Sect. 4.
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2.5 Units and Parameter Values

We use the same units as we discussed in our previous work for the quantities included
in our model. Specifically, we denote the unit of time by T and we set 1T to be equal
to the mean generation time of the species. For a one-dimensional habitat, we choose
the unit of space so that the diffusion coefficient D of the population becomes unity.
That is, denoting the unit of space by X, we set 1X to be the root mean square of
the (random) dispersal distance of the population in 1T, divided by

√
2. Estimates

of the random component of the species’ dispersal can be obtained, for example, by
measuring dispersal distance of a subpopulation of individuals that are well adapted
to the environment at the core of the population. Due to their negligible phenotype-
environmentmismatch, such individuals do not perceive a significant force compelling
directed dispersal. For multi-dimensional habitats, the same approach can be used to
set the unit of space for each spatial dimension independently. Moreover, we denote
the unit of measurement for population abundances by N. Having set the unit of space,
we set 1N to be equal to the carrying capacity of the environment for 1Xm unit of
habitat volume. This results in the carrying capacity becoming equal to unity. Finally,
we denote the unit of measurement for the quantitative trait by Q, and we set 1Q to
be equal to one standard deviation of the trait values at the core of the population.
Further discussion of our choices of units is available in Section 3.1 of our previous
work (Shirani and Miller 2022).

Our suggestions of plausible ranges of values given in Table 1 are discussed in
detail in Section 3.2 of our previous work, except for the new parameter A. The values
specified as “typical” in Table 1 are the values we use as default parameter values
in our numerical simulations unless otherwise stated. Due to the level of abstraction
that is inevitably present in our model of optimal dispersal, finding a biologically
reasonable range of values for the dispersal propensity parameter A based on empirical
measurements available in the literature is infeasible. Instead, we investigate a range
from 0 to 10 X2/T by simulating the model with different values of A and observing
the resulting range of variation in the population density, speed of range expansion
waves, and magnitude of the trait variance. In an extreme situation, for example, if the
mean value of the trait in (10b) differs from Q by one phenotype utilization variance
and the magnitude of the environmental gradient is sufficiently greater than the preset
value = 1Q/X, then amaximumdispersal (advection) rate of approximately 10X/T
is created in a one-dimensional habitat at propensity value A = 10X2/T.

3 Interpretation of theModel Equations

Before presenting our numerical results, we discuss the interpretation of each of the
terms involved in the equations. Inspecting the equations provides useful mechanistic
insight into the less-intuitive impacts of phenotype-optimal dispersal.
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3.1 Population Density Equation

The diffusion term given by (10a) in our model gives the rate of change in the popula-
tion density of the species due to randomdispersal. In addition tomodeling exploratory
movement of individuals for developing perceptions of the environment, as we dis-
cussed before, this diffusion term can also incorporate the effects of other uniformed
movements, such as short-range movements to escape kin competition or inbreeding
(Clobert et al. 2009). Moreover, the presence of this random dispersal term in the
equations further makes it possible for local populations to leave a locally optimal
location and eventually settle in a location that globally maximizes their phenotype-
environment match.

The advection term (10b) incorporates changes in population density due to directed
optimal dispersal. When the mean phenotypic potential for optimal dispersal, (q −
Q)/V, and the perceived environmental gradient ∇̃xQareboth non-zero, the population
density undergoes a directional change. If (q − Q) > 0, the whole population moves
in the direction of the environmental gradient. If (q−Q) < 0, the population moves in
the opposite direction. In either case, the mean mismatch |q − Q| is reduced through
the directed movement.

The term−S
2 (q−Q)2 in (10c) shows the effects of natural selection in reducing the

population density when the trait mean q differs from the optimum Q. The term −S
2v

in (10c) captures the effect of the phenotypic load imposed by natural selection on
the population growth, compared with a monomorphic population. Note that greater
values of trait variance create stronger phenotypic loads. The term −R

K

√
V/(v + V)n

in (10c) represents the decrease in population growth rate due to the average intraspe-
cific competition between the individuals. Unlike the phenotypic load, the average
intraspecific competition becomes weaker when the trait variance v becomes larger.
This is because larger trait variance implies greater average difference between phe-
notypes and hence less competition load due to (4). Furthermore, when individuals’
phenotype (resource) utilization variance V becomes smaller, that means when the
individuals become more specialized, the average competition becomes weaker. This
is because there is a lower chance that specialists will utilize the same resources.
Note that competitive release at small values of V can allow for population density to
increase significantly aboveK,which is the carrying capacity we define for sufficiently
competitive (generalist) individuals with V 
 1.

3.2 Trait Mean Equation

The terms (11a) and (11b) show how random gene flow caused by diffusive dispersal
affects the rate of change of trait mean, or equivalently, the local adaptation rate of the
population. Thedivergence term in (11a) represents the homogenizing effect of random
gene flow. Since population density changes sharply at the range margin, ∇x log n in
(11b) is significantly larger near the edge of the population, compared with the core.
Therefore, (11b) effectively models asymmetric core-to-edge gene flow caused by
random dispersal. In the absence of optimal dispersal, such maladaptive gene flow
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can potentially result in gene swamping at marginal populations (Lenormand 2002;
Kirkpatrick and Barton 1997).

The terms (11c)–(11e) capture the effects of individual-level optimal dispersal on
population-level local adaptation. For the divergence term (11c),we canuse the product
rule for the divergence of a scalar field times a vector field4 (with the scalar field v) to
write

− div

(
A(x)

v(x, t)

V
∇̃xQ(x)

)
= −

〈∇xv(x, t)

V
, A(x)∇̃xQ(x)

〉

Rm
(14a)

− v(x, t)

V
div

(
A(x)∇̃xQ(x)

)
. (14b)

The inner product term (14a) implies that, due to directed movements, the trait mean
in a local population decreases when the gradient in population’s trait variance is
aligned, or makes an acute angle, with the gradient in trait optimum. The trait mean
increases if the two gradients make an obtuse angle, or point in opposite directions.
The simulation results provided in our previous work (Shirani andMiller 2022, Figure
2) and the results given in Fig. 1 below, as well as empirical observations (Takahashi
et al. 2016), show that trait variance during the range expansion of a species—over a
continuous habitat with linearly varying trait optimum—decreases from core to edge.
This means that, trait variance gradient will point in the same direction as of the
environmental gradient on one side of the population’s range, whereas it will point in
the opposite direction on the other side. As a result, changes in the trait mean due to
(14a) will be increasing on one side and decreasing on the other side. Such changes
are often adaptive. For instance, due to (14a), the trait mean in Fig. 1 will increase in
the right half of the population’s range, and will decrease in the left half. In both cases,
the population gets better adapted to the environmental optimum trait.

The component (14b) of (11c) shows that divergence in the perceived environmental
gradient can indeed result in changes to the trait mean, even if population density
and trait variance are spatially homogeneous. When A(x) is constant, as we assume

throughout this work, trait mean is decreased by (14b) if div
(
∇̃xQ(x)

)
> 0. An

illustration of the movement rates and directions that result in such a decrease in trait
mean is provided in Figure S1. Similarly, trait mean increases when div

(
∇̃xQ(x)

)
<

0. Knowing that div
(
∇̃xQ(x)

)
is in fact the (perceived) Laplacian of the trait optimum

at x , we can also think of the effect of (14b) as changing the trait mean in an opposite
direction to the local average change5 in the trait optimum. Depending on the value
of the trait mean, and in particular on whether it is below the trait optimum or above
it, such changes can be adaptive or maladaptive to the population. However, even
if the pure effect of divergence in perceived environmental gradient appears to be
maladaptive, its combined effect with the several other components of the optimal

4 We recall the product rule for divergence of a scalar field times a vector field as div(βB) = β div(B) +
〈∇xβ , B〉Rm , where β denotes a scalar field and B denotes a vector field.
5 The Laplacian � f (x) := div(∇x f (x)) of a function f at a point x is essentially equal to the average of
the differences f (y) − f (x) when y takes all values over a small ball B(x) centered at x . In other words,
� f (x) essentially gives the amount by which the average value of f over B(x) differs from f (x).
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dispersal that are present in the model—which jointly affect population density, trait
mean, and trait variance—can still be adaptive. In this work, however, we always
assume that the environmental gradient is constant in both space and time. This implies

that div
(
∇̃xQ(x)

)
= 0 in our simulations, except in the close vicinity of the habitat

boundary. Therefore, (14b) does not have any impact on the local adaptation that we
observe in our results due to phenotype-optimal dispersal.

As with (11b), the presence of ∇x log n in (11d) implies that this term mainly
represents the asymmetric core-to-edge effects of gene flow caused by directed dis-
persal. To understand whether the effects of (11d) are adaptive or maladaptive, we
first note that (11d) can be rewritten by taking the scalar term A(x) v(x,t)

V ≥ 0 out of

the inner product, giving −A(x) v(x,t)
V

〈
∇x log n(x, t) , ∇̃xQ(x)

〉
Rm

. Due to the popu-

lation’s adaptation to the environment during its range expansion, ∇xq is expected to
be aligned with ∇̃xQ, which implies that (11d) and (11b) have opposite signs. As a
result, the core-to-edge directed gene flow caused by phenotype-optimal dispersal will
indeed be adaptive at the range margin, unlike the maladaptive effects of the asym-
metric gene flow created by random dispersal. Therefore, (11d) represents one of the
main effects of matching habitat choice on facilitating adaptation at range margins.
Note that, (11d) further implies that larger values of trait variance makes such adaptive
effects stronger.

The inner product term (11e) shows how the mean phenotypic potential for
optimal dispersal, (q − Q)/V, and the perceived environmental gradient directly
cause local adaption. First note that (11e) can be rewritten as −A(x) q(x,t)−Q(x)

V〈
∇xq(x, t) , ∇̃xQ(x)

〉
Rm

. Due to the expected alignment between the directions of

∇xq and ∇̃xQ, (11e) is then negative when (q − Q) > 0 and it is positive when
(q − Q) < 0. In either case, the resulting change in trait mean due to (11e) is adap-
tive, that is, it decreases the magnitude of the mismatch |q − Q|. Importantly, (11e)
explicitly shows that the rate of population-level adaptation is higher when the mean
phenotypic potential of individuals for optimal dispersal is greater and their perceived
environmental gradient is steeper. Note that, as the population gradually adapts to the
environment, the mean phenotypic potential for dispersal decreases asymptotically.
This means that, the rate of adaption caused by (11e) decreases as the population
gradually gets better adapted to the environment. Yet (due to the terms (11c) and (11d)
we discussed above) the presence of trait variation in the population provides an addi-
tional adaptation force independent of the mean mismatch |q − Q|, which works to
enhance the overall rate of adaptation.

Finally, the reaction term (11f) represents local adaptation by natural selection.
When (q − Q) > 0, this term forces a decreasing change in q, which results in a
decrease in |q − Q| and enhanced local adaptation. Similarly, when (q − Q) < 0,
the trait mean q increases due to (11f), leading to a decrease in |q − Q| and better
adaptation. Importantly, (11f) demonstrates the crucial role of genetic variation in
enabling adaptation by natural selection. The adaptation rate controlled by (11f) is
directly proportional to the level of trait variance v. Larger values of v imply greater
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amounts of genetic variation for natural selection to act upon, and hence faster adaption
rates by natural selection.

3.3 Trait Variance Equation

The terms (12a)–(12c) represent the effects of random dispersal on rate of change of
trait variance. Along with (11a), which tends to homogenize trait mean, the divergence
term in (12a) tends to homogenize trait variance. Therefore, (11a) and (12a) together
capture the homogenizing effects of random gene flow on population’s phenotypes.
As with what we described above for the trait mean equation, the presence of the term
∇x log n in (12b) implies that (12b) mainly captures the effects of asymmetric core-
to-edge random gene flow on trait variance. As our simulation results shown in Fig. 1
below imply, ∇x log n and ∇xv are often aligned with each other during the range
expansion of a population. Therefore, (12b) is expected to be positive, and hence it
tends to increase trait variance at rangemargins, as the range expands. This can explain
a traveling-wave profile for trait variance, as we observe in our numerical simulations.
The inner product term (12c) is always positive, and it depends on the magnitude of
the gradient in trait mean. Since the population typically is well-adapted at its core,
∇xq closely follows ∇xQ at central regions of the range. As a result, (12c) is the term
which is responsible for inflating trait variance at the population’s core; a well-known
effect of random gene flow over an environmental gradient (Barton 2001; Garant et al.
2007; Lenormand 2002). The steeper the environmental gradient, the larger the trait
variance at central populations.

The terms (12d) and (12e) give the effects of the non-random gene flow created
by optimal dispersal on the rate of change of trait variance. Since ∇xq and ∇xQ are
expected to be in the same direction as the population adapts to the environment,
(12d) typically takes negative values. Therefore, trait variance is reduced due to (12d).
Since ∇xq follows ∇xQmore closely in central regions, where the population is well-
adapted to the environment, and since v is also larger in those regions, the reduction
in trait variance caused by (12d) is significantly stronger at the well-adapted core of
the population. The mismatch (q −Q) and the gradient ∇xv in (12e) both take larger
magnitudes near the range margins, where the population is not strongly well-adapted.
As a result, (12e) mainly influences the trait variance at marginal populations. As
discussed in our previouswork (Shirani andMiller 2022, Sect. 2.1), and shown in Fig. 1
below, the decreasing core-to-edge profile of trait variance during range expansion over
a constant environmental gradient (linearly changingQ) is directly related to the spatial
profile of the trait mean. Near the peripheral regions, over which maladaptive gene
flow causes q to fall below the optimum Q, trait variance decreases in the direction

of the environmental gradient. That is, when (q −Q) < 0, we expect
〈
∇xv , ∇̃xQ

〉
Rm

to be negative. This implies that (12e) will be negative when (q − Q) < 0. Likewise,
near the peripheral regions over which (q − Q) > 0, we observe v to be increasing
in the direction of the environmental gradient. As a result, (12e) will also be negative
when (q − Q) > 0. Therefore, in any case, (12e) tends to decrease the trait variance,
predominantly within less-adapted marginal populations.
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The above discussion implies that the directed gene flow generated by phenotype-
optimal dispersal reduces trait variance both within marginal and central populations.
As we pointed out in the Introduction section, reducing phenotypic variation within
local populations is in fact one of the most important predicted effects of matching
habitat choice. The terms (12d) and (12e) in our model show how this reduction
is controlled by the interaction between several factors, such as mean phenotypic
potential for optimal dispersal (q − Q)/V, trait variance, perceived environmental
gradient, and gradient in trait mean and variance.

The first term in (12f) models the effects of intraspecific competition on the rate
of change of trait variance. Note that this term is always nonnegative, implying that
competition tends to increase trait variance. This is because competition reduces the
fitness of individuals with close phenotype values, while it does not significantly affect
the individuals with sufficiently different phenotypes. When V → ∞, that is, when
individuals become highly generalist, the competition term in (12f) vanishes to zero
and causes no inflation in trait variance. This is because competition affects the fitness
of highly generalist individuals almost uniformly, as these individuals almost equally
utilize all available resources regardless of their phenotype. As a result, no phenotype
variation is generated by the competition between them. When V → 0, that is, when
individuals become highly specialist, the term

√
V/(v + V) in (12f) converges to zero.

However, the competitive release gained by the population when V → 0 allows for
the maximum steady-state population density n, controlled by (10c), to take arbitrarily
large values. As a result, the competition term in (12f) remains positive (non-zero)
when V → 0. Our computations of spatially homogeneous steady-state values of trait
variance imply that, when V → 0, trait variance increases to a finite value due to this
non-zero competition term; see Figs. 2b and S4b for A = 0.

The term −Sv2 in in (12f) represents the well-known effect of natural selection in
eroding genetic variation by eliminating less-fit individuals. Note that, the larger the
trait variance v, the stronger the effect of natural selection, and hence the higher the
rate of reduction in v. Finally, the presence of the constant term U in (12f) shows the
effect of mutation, as a perpetual source of genetic variation within the population.

4 Results

To determine when, if ever, and how phenotype-optimal dispersal markedly affects
range dynamics and adaptation, we solve the equations of the model (10)–(12) numer-
ically using the parameter values given in Table 1. Our discussion in Sect. 3 indicates
how each of the eco-evolutionary forces incorporated into the model influences, sep-
arately, the species’ range evolution. However, numerical studies are necessary since
intuition is inadequate for predicting how these forces interact to determine popula-
tion density and trait moments dynamics. Moreover, a rigorous analytical study of our
model is infeasible, due to its level of complexity.

In all except one of our numerical studieswe consider a one-dimensional continuous
habitat with linearly changing environmental optimum phenotype. Our only study in
a two-dimensional habitat investigates the effects of phenotype-optimal dispersal in
the presence of habitat fragmentation. The details of the numerical scheme we use
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to compute the solutions are given in Appendix B of our previous work (Shirani and
Miller 2022). A discussion of the challenges in numerical computation of the solutions
can also be found in Section 6.5 of our previous work.

4.1 Adaptive Range Dynamics with Phenotype-Optimal Dispersal

We first demonstrate how optimal dispersal changes the spatiotemporal population
dynamics of a species. To isolate the effects of phenotype-optimal dispersal, we carry
out pairs of numerical simulations that are identical except that only one incorporates
this form of dispersal. Specifically, in one of the simulations we only consider random
dispersal, whichmeans thatwe setA = 0X2/T. In the other simulationwe additionally
include strong optimal dispersal, by setting A = 10X2/T. The other parameters of the
model remain the same in both simulations. Other than the trait optimum Q, which is
considered to be linearly increasing over �, the rest of the parameters are assumed to
be constant. We consider a one-dimensional habitat � = (−50 X, 50 X) ⊂ R with
the reflecting boundary conditions (13).

4.1.1 Range Evolution in Steep Environmental Gradients

To make the effects of optimal dispersal strong enough to be clearly visible in
our graphs, we consider a steep environmental gradient of ∇xQ = 1.5 Q/X. We
initially introduce the species at the center of the habitat with a density given as
n(x, 0) = 0.5 sech(|x |/√2). We assume that the trait mean in this initial population
varies linearly in space, with the constant gradient of ∇xq(x, 0) = 0.6∇xQ(x). We
further assume that the initial population is perfectly adapted to the environment at
the center, q(0, 0) = Q(0), and has a constant trait variance of v(x, 0) = 1 Q2. The
results of our simulations over the computation time horizon of T = 40 T are shown
in Fig. 1.

We observe that, with or without optimal dispersal, the species’ population density
first grows to a maximum capacity—determined by the environment’s carrying capac-
ity and the level of competitive release—and then expands indefinitely in the form of
a traveling wave. The population’s trait mean converges to the optimum trait due to
the adaptation caused both by natural selection and by phenotype-optimal dispersal,
when it exists. The population’s trait variance evolves a spatial profile that is decreas-
ing from core to edge of the population. The maximum trait variance at the population
core reaches a constant upper bound.

Without optimal dispersal, the peripheral populations near the wavefronts are mal-
adapted and exhibit low trait variance compared with the population near the range
center (Fig. 1a). This maladaptation is mainly caused by asymmetric core-to-edge ran-
dom gene flow, which decreases the trait mean below the optimum near the right edge
and increases it above the optimum near the left edge. At the core, population density
is almost uniform and hence gene flow is symmetric. This implies that random gene
flow does not significantly affect the trait mean at central locations and local adapta-
tion is maintained by natural selection. Since the environmental gradient is steep and
the population is well-adapted to it at its core, random gene flow from adjacent areas
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Fig. 1 Adaptive range dynamics of a species in a one-dimensional habitatwith steep environmental gradient.
Here, m = 1, Q(x) is linear in x with a relatively steep gradient of ∇xQ = 1.5 Q/X, and A(x) is constant,
taking different values in panels (a) and (b). The rest of the model parameters take the typical values given
in Table 1. In each of the panels, evolution of the population density n(x, t) is shown on the left, evolution of
the trait mean q(x, t) is shown in the middle, and evolution of the trait variance v(x, t) is shown on the right.
Panel (a) shows the range expansion dynamics of a species without optimal dispersal, A = 0 X2/T, whereas
panel (b) shows the range expansion dynamics of the species with strong optimal dispersal, A = 10 X2/T.
In all graphs, curves are shown at every 4 T, and the thick orange curves indicate the initial curves at
t = 0T. In the insets of trait mean graphs, curves are shown at every 1 T. Arrows show the direction of
evolution in time. In each graph, a sample curve at t = 8 T is highlighted in red. Dashed lines indicate the
effective edges of the population at t = 8 T, associated with the inflection points on the highlighted curve of
population density. The solid black lines in the graphs of trait mean show the environmental trait optimum
Q. The curves of trait variance take large values outside the effective range of species. Such values are not
biologically meaningful as they do not occur within the range of the species, and have been cut to smaller
values for better visualization of the meaningful parts of the graphs

generates large phenotypic variations among central individuals. Near the edges, how-
ever, the trait mean fails to follow the steep gradient in the optimum trait. As a result,
trait variance decreases from core to edge in parallel with the decrease in gradient of
the trait mean. Further descriptions of the profiles of trait mean and variance under
random dispersal are available in Section 4.1 of our previous work (Shirani andMiller
2022).

With optimal dispersal, both the rate and the extent of adaptation in central and
peripheral populations are enhanced compared to the diffusion-only case (Fig. 1b). The
traveling-wave dynamics in the two cases are similar, but we note several differences.
Comparing the insets in the graphs of trait mean in Fig. 1a, b, we see that phenotype-
optimal dispersal significantly increases the local adaptation rate of the population.
Convergence to the environmental optimum at the population’s core occurs in almost
one generation time with optimal dispersal, whereas the same level of adaptation takes
more than ten generations to occur in the absence of optimal dispersal. The level of
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maladaptation at range margins is also substantially decreased by the directed gene
flow created by phenotype-optimal dispersal. These are all consistent with the general
predictions regarding the adaptive effects of matching habitat choice, such as those
discussed in the Introduction section, or generated by inspecting the equations of our
model. Importantly, by comparing the curves of trait variance in Fig. 1a, b, we also
observe that the phenotypic assortment resulting from preferential movements under
optimal dispersal significantly reduces trait variance within the population. Moreover,
the curves of population density in Fig. 1a, b show that adaptation reinforced byoptimal
dispersal increases the overall range expansion speed of the population, especially at
earlier stages of population establishment in the habitat. The maximum population
density, however, is not notably affected by optimal dispersal at the environmental
gradient we simulated in Fig. 1.

4.1.2 Range Evolution with Specialized Individuals

The phenotypic potential of individuals to disperse optimally (that is, (p − Q)/V in
(8)) is stronger when their phenotype utilization variance V is smaller; meaning that
the individuals have a higher degree of specialization. To see if phenotype-optimal
dispersal by specialists can significantly influence the range dynamics when the envi-
ronmental gradient is not very steep, we simulate our model with the relatively small
value of V = 1 Q2 under the typical gradient of ∇xQ = 0.2 Q/X. The results are
shown in supplementary Fig. S2. We observe similar effects to those shown in Fig. 1.
That is, phenotype-optimal dispersal facilitates local adaptation of specialists on a
within-generation timescale, reduces their average maladaptation at range margins,
and reduces their within-population trait variance. However, unlike what we observed
inFig. 1, the population’s range expansion speed is not considerably increased.Without
optimal dispersal, we see in Figure S2a that the population density rises significantly
above K = 1 N/X. This is due to the population’s ecological release gained by
less-competitive specialists. However, phenotype-optimal dispersal limits the level
of competitive release, as it counteracts the effects of smaller phenotype utilization
variance (less competition) by significantly reducing phenotypic variation within the
population. Phenotypically close individuals can still remain sufficiently competitive
even when they are specialists and utilize fewer common resources. As a result, we see
in Figure S2b that population density is still approximately bounded by the carrying
capacity K = 1 N/X when the specialist individuals disperse optimally.

4.2 When Does Phenotype-Optimal Dispersal Influence Adaptive Range
Dynamics?

The effects of phenotype-optimal dispersal are marked only when environmental gra-
dients are very steep. The pronounced effects of optimal dispersal we observed in
Fig. 1 were obtained at the environmental gradient ∇xQ = 1.5 Q/X. The steepness
of the environmental gradient is in fact a key factor in determining whether or not
phenotype-optimal dispersal will be sufficiently consequential in a species’ range
evolution. The perceived force for optimal dispersal (8) is directly proportional to
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the (perceived) magnitude of the environmental gradient. Moreover, the phenotypic
potential (p − Q)/V in (8) is directly influenced by the level of phenotypic varia-
tion in the population, which in turn can be substantially inflated by random gene
flow under steep environmental gradients. Estimates of realistic values for the slopes
of environmental optimum gradients in nature, however, are not widely available in
the literature—noting that our choices of units for ∇xQ requires joint measurements
of optimal trait values, dispersal distance, and generation time. Yet, based on some
available data, in our previous work we argued that a plausible range of values for
‖∇xQ‖Rm could lie approximately between 0 and 2 Q/X, (Shirani and Miller 2022,
Sect. 3.2). This means that the gradient ∇xQ = 1.5 Q/X used for the results shown
in Fig. 1 is very steep; for example, possibly associated with long-range dispersal of
birds over elevational gradients. In supplementary Fig. S3, we show our simulation
results for a shallower environmental gradient of ∇xQ = 0.2 Q/X, which might be
more typically observed in nature. We see that phenotype-optimal dispersal does not
significantly affect the species’s range dynamics in this case.

Further simulations with varying levels of environmental gradient and individuals’
specialization confirmed that optimal dispersal was significantly consequential when
gradients were very steep. In each of these simulations, we considered three different
levels of optimal dispersal propensity,A = 0 X2/T (nooptimal dispersal),A = 4 X2/T
(medium optimal dispersal), andA = 10 X2/T (strong optimal dispersal).We ran each
simulation for a period of time long enough that the initial transient states passed. We
used the computed curves near the end of each simulation to measure approximate
speed and amplitude (peak value) of the traveling waves of population density, as well
as maximum trait variance attained at the population’s center. The results are shown
in Fig. 2.

At extreme (unrealistic) gradients, optimal dispersal greatly enhances population
density and lowers both (local) trait variance and extinction risk (Fig. 2a). Similarly, a
population’s expansion at extremely steep gradients is much faster when the individu-
als disperse optimally. The intraspecific trait variance is also controlled to much lower
and more reasonable levels by the assortment effects of optimal dispersal at extreme
gradients. Note that the relatively sharp decline in the amplitude of the population
density waves at extreme gradients is predominantly due to the phenotypic load −S

2v

in (10c) which increases as v increases with gradient. That is why significantly slower
decline in wave amplitude is observed when optimal dispersal is strong and effectively
controls the rise in trait variance to more moderate values.

We note, however, that the large effects of optimal dispersal observed in Fig. 2a
occur mainly in extreme environmental gradients. Based on our previous discussions
of plausible ranges of values of environmental gradients (Shirani and Miller 2022,
Sect. 3.2), such improvements mainly occur at exceedingly steep gradients which are
unlikely to be biologically realistic. As the insets in the graphs of Fig. 2a show, when
the gradient in trait optimum takes more reasonable values between 0 and 2 Q/X,
the improvements are much less pronounced. We observe significant changes in the
expansion speed only at steep gradients greater than 1Q/X. Atmore typically observed
gradients below 1 Q/X, phenotype-optimal dispersal still facilitates local adaptation
and significantly reduces within-population trait variance, but such effects appear to
be less consequential for the population’s range expansion capacity.
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Fig. 2 Effects of optimal dispersal on range expansion waves and maximum intraspecific trait variance of a
species. Here, m = 1, andA(x) takes three different constant values, 0X2/T, 4X2/T, and 10X2/T. The trait
optimum Q(x) is linear in x , with variable gradient in panel (a) and constant gradient of ∇xQ = 0.2Q/X
in panel (b). The phenotype utilization variance takes the constant value V = 4Q2 in panel (a), and is
variable in panel (b). The rest of the model parameters take their typical values given in Table 1. In each
panel, variations in the amplitude of the traveling waves are shown on the left, variations in the speed of the
traveling waves of population density are shown in the middle, and variations in the maximum intraspecific
trait variance are shown on the right. Panel (a) shows the effects of different levels of optimal dispersal at
different magnitudes of the environmental gradient ∇xQ. Panel (b) shows the effects of different levels of
optimal dispersal at different values of the individuals’ phenotype utilization variance V

In a typically shallowenvironmental gradient of∇xQ = 0.2 Q/Xwith only diffusive
dispersal (A = 0 X2/T), increased specialization raises population density and trait
variance (Fig. 2b). With optimal dispersal, both these quantities are regulated to lower
levels. By contrast, Fig. 2b shows that phenotype-optimal dispersal does not signifi-
cantly increase range expansion speed, even when the phenotype utilization variance
in the population is small. To be more precise, in the absence of phenotype-optimal
dispersal the competitive release afforded by small values of V results in significant
increase in both population density and trait variance asV → 0. The directed gene flow
created by optimal dispersal, however, substantially depresses the effects of this com-
petitive release. It controls the level of increase in trait variance to much lower values.
As a result, competition remains strong even though small values of V tend to release
the individuals from competition. When optimal dispersal propensity is very strong
(A = 10 X2/T,) the effect of competitive release is fully depressed and the amplitude
of population density waves remains close to the carrying capacity K = 1 N/X for all
values of V. When n is controlled to almost constant values, decreasing V in the first
(competition) term in (12f) to zero will eliminate the inflating effects of competition
on trait variance. As a result, with strong optimal dispersal, steady-state trait variance
will converge to a value mainly controlled by random gene flow (term (12c) in our
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model) and mutation-section balance (term −Sv2 +U in (12f)). Since both U and the
environmental gradient are relatively small in Fig. 2b, this value is relatively small.
This explains the sharp decline we observe in the curves of trait variance in Fig. 2b as
V → 0, both for A = 10 X2/T and for A = 4 X2/T.

Finally, we note that our numerically obtained traveling wave amplitudes and trait
variances are close to values that can be obtained analytically. The curves of wave
amplitude and trait variance in Fig. 2 were computed approximately, by running the
simulations for a sufficiently long time and measuring the (almost steady) values of
these quantities at the center of the population at the end of the simulation. These
curves can be computed more accurately by solving the equations of the fully-adapted
equilibrium population, similar to our computations in Section 4.2 of our previous
work (Shirani and Miller 2022). To perform such analysis—which importantly allows
us to also derive equations for critical environmental gradients—we first note that
the range dynamics shown in Fig. 1 suggests that, as t → ∞, the solutions eventually
converge to an equilibrium. Except in the close vicinity of the habitat boundary (where
we modify the perceived gradient as described in Appendix A), the population density
and trait variance at this equilibrium are spatially homogeneous and trait mean is equal
to Q. We denote this equilibrium state by (n∗, q∗, v∗), where n∗ > 0 and v∗ ≥ 0.
Sufficiently far from the habitat boundary, we have∇xn∗ = 0, q∗ = Q, and∇xv

∗ = 0.
Since we assume Q to be linear, we further have div(∇xq∗) = 0.

For a one-dimensional habitat, m = 1, the algebraic derivations shown in Appendix
C result in the equilibrium equations

n∗ = K

R

√
v∗ + V

V

(
R − S

2
v∗

)
, (15)

and

5Sv∗3 +
(
4SV − 2R + 8(A/V)ϒ

( ‖∇xQ‖R
) ‖∇xQ‖2

R

)
v∗2

− 4
(
U + 2D ‖∇xQ‖2

R
− 2(A/V)ϒ

( ‖∇xQ‖R
) ‖∇xQ‖2

R
V

)
v∗

− 4
(
U + 2D ‖∇xQ‖2

R

)
V = 0, (16)

where ϒ
( ‖∇xQ‖R

) := 
+‖∇xQ‖R , as in (9). The cubic algebraic equation (16) has a

positive root for all nonzero values of ‖∇xQ‖2
R
. The graph of this root with respect to

changes in the magnitude of the gradient ‖∇xQ‖R is approximately a straight line with
positive slope, as shown in supplementary Fig. S4a. Substituting this root into (15)
for different values of ‖∇xQ‖R provides a graph of n∗ with respect to ‖∇xQ‖R. With
the parameter values associated with Fig. 2, this graph gives an approximate curve of
wave amplitudes for each value of A, as shown in supplementary Fig. S4a.We observe
very close agreement between the approximate curves shown in Fig. 2 and the accurate
ones shown in Fig. S4.

Remark 5 (Critical environmental gradients) The results shown in Fig. 2a imply that,
for every value of A, there exists a critical environmental gradient magnitude at which
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the curves of wave amplitude and wave speed concurrently vanish to zero. That is, the
population fails to survive beyond the critical gradient—unless possibly marginally
(with low density over a short range) at the vicinity of the habitat boundary. The
equilibrium equations (15) and (16) allow us to derive a fairly simple equation for
calculating the critical gradients in a one-dimensional space. Setting n∗ = 0 in (15)
gives v∗ = 2R/S,which is a solution of (16)when the environmental gradient satisfies

‖∇xQ‖2
R

= 4R2 − SU

2
(
SD − 2R(A/V)ϒ

( ‖∇xQ‖R
)) , (17)

where ϒ
( ‖∇xQ‖R

) := 
+‖∇xQ‖R as we stated before. The solution of (17) gives the

critical gradient magnitude, which we denote by ‖∇xQ‖(max)
R

. When dispersal is only
random, that is A = 0, the critical gradient can be calculated as

‖∇xQ‖(max)
R

=
√
2R2

SD
− U

2D
≈

√
2R2

SD
, (18)

which is the same formula we derived in our previous work (Shirani and Miller 2022,
Remark 4). The approximation in (18) is made based on the fact that, typically, U �
4R2/S. ��
Remark 6 (Slow growth rate, strong selection, and chance of survival) The critical
gradient magnitude ‖∇xQ‖(max)

R
can be used to predict the chance of survival of a

species under steep environmental stress gradients. Larger values of ‖∇xQ‖(max)
R

imply
higher chance of survival (lower chance of extinction). In the absence of optimal
dispersal, the critical gradient (18) implies that slowly-growing species (small R) and
species under strong selection (large S) are at higher risk of extinction. To see if
phenotype-optimal dispersal is sufficiently effective in increasing the survival chance
of such species, we use (17) to compute critical gradients for species with relatively
slow growth rate (R < 1 T−1) and species under relatively strong selection (S >

0.5 Q−2/T). The results are shown in Fig. 3. We first note that, in the absence of
optimal dispersal, A = 0 Q/X, these vulnerable classes of species are indeed at high
risk of extinction within plausible ranges of values for ‖∇xQ‖R (that is, between 0
and 2 Q/X based on our estimates (Shirani and Miller 2022, Sect. 3.2)). Phenotype-
optimal dispersal appears to substantially increase the survival chance of the species.
With strong optimal dispersal, A = 10 Q/X, for example, the species is unlikely to
go extinct at plausible gradients (of course, excluding physical barriers), even with a
very slow growth rate such as R = 0.2 T−1, or under an exceedingly strong selection
such as S = 2 Q−2/T. ��

4.3 Phenotype-Optimal Dispersal Enhances Local Adaptation at RangeMargins

We now study more specifically how the mean adaptation rate, ∂t q, is affected by
random and non-random (directed) components of gene flow, particularly at range
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Fig. 3 Effects of optimal dispersal on survival chance of slowly-growing species and species under strong

selection. The critical environmental gradient ‖∇xQ‖(max)
R

is computed by solving (17) and is plotted in (a)
versus the maximum growth rate R, and in (b) versus the strength of stabilizing selection S. The larger the
critical gradient the higher the chance of survival of the species in steep environmental stress gradients. In
each graph, computations are performed for six different values of A in the range from 0 X2/T to 10 X2/T.
Parameter R takes relatively small values in (a) and the constant value R = 2 T−1 in (b). Parameter S takes
the constant value S = 0.2 Q−2/T in (a) and relatively large values in (b). The rest of the model parameters
take their typical values given in Table 1

margins (wavefronts). The sumof the terms (11a) and (11b) represents the contribution
of random gene flow in determining the rate of change of trait mean, whereas the sum
of the terms (11c)–(11e) presents the contribution of directed gene flow. The sum of
all terms (11a)–(11e) determines how the trait mean is changed due to individuals’
dispersal, both random and directed. We illustrate the effects of each of these three
contributions separately, using the same simulation layout we used for the results
shown in Fig. 1b, and the same solutions of the model that we computed there. The
resulting curves as the population expands its range over time are shown in Fig. 4.
Due to symmetry, the curves are shown only for the right half of the habitat. Positive
values in each curve at a point x imply that the corresponding component of gene
flow represented by the curve tends to increase the trait mean q at x . Contrariwise,
negative values imply a tendency to decrease q. Since the initial profile of trait mean
at t = 0 T, as shown in Fig. 1b, is below the trait optimum Q over the right half of the
habitat, positive values of the curves imply adaptive effects (increasing q toward Q),
and negative values imply maladaptive effects.

Gene flow to range margins (wavefronts) induced by phenotype-optimal dispersal
is always adaptive, but is of little consequence except at steep environmental gra-
dients. At such gradients, optimal dispersal speeds up adaptation at both the range
center and range margins, although a perfect match of trait mean and trait optimum
is never achieved at the wavefront. To see this, we first note that Fig. 1b showed rapid
convergence of q to Q at the population’s core, due to the strong effects of phenotype-
optimal dispersal at the steep gradient ∇xQ = 1.5Q/X. This rapid convergence can
also be clearly observed in Fig. 4. The rate of change in q quickly approaches zero
at the core of the population after a couple of generations. At range margins, how-
ever, Fig. 1b shows that adaptation never occurs perfectly. The core-to-edge random
gene flow created by random dispersal is always maladaptive, whereas the directed
gene flow generated by phenotype-optimal dispersal is always adaptive. Importantly,
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Fig. 4 Effects of gene flow on local adaption of a species. Contribution of random gene flow to the rate of
change of the trait mean, ∂t q, is shown on the left. The curves of this graph are computed as the sum of the
terms (11a) and (11b), which capture the effects of random dispersal on ∂t q. In the middle, contribution
of directed gene flow to ∂t q is shown. The directed gene flow is generated by optimal dispersal and its
contribution is computed as the sum of the terms (11c)–(11e). Contribution of the total (net) gene flow to
∂t q, that is, the sum of the curves shown in the middle and the left graphs, is shown on the right. The graphs
correspond to the same simulation of a species’ range dynamics as in Fig. 1b, that is, when ∇xQ = 1.5 Q/X
and A = 10 X2/T. In all graphs, the computed curves are shown only on the right half of the habitat. The
curves extend symmetrically about the origin to the left half of the habitat. Moreover, the portion of each
curve that lies outside the effective range of the species, that means over the regions where the population
density rapidly vanishes to zero, has been made transparent. In all graphs, curves are shown at every 1 T.
The descriptions of the highlighted curves, arrows, and dashed lines are the same as those provided in
Fig. 1b

the total gene flow to range margins appears to be always adaptive, implying that
phenotype-optimal dispersal not only compensates for the maladaptive effects of ran-
dom movements, but also reverses their effects on local adaptation of the marginal
populations. Similar observations apply when we analyze the adaptive/maladaptive
effects of different components of gene flow associated with the simulation results
shown in supplementary Fig. S3b, that is, when the environmental gradient is shallow
(∇xQ = 0.2Q/X) but individuals are highly specialized (V = 1 Q2). The resulting
curves are shown in Fig. S5. The difference in this case—possibly because of the
complicated interaction between the effects of optimal dispersal and competition—is
that convergence at the core shows overshooting dynamics, during which the curves
of directed gene flow take negative values (but still adaptive) to decrease the overshot
q back to Q.

The total gene flow to the wavefront remained adaptive in further simulations with
shallower (i.e. more typical) environmental gradients and lower degrees of specializa-
tion (larger V). In these simulations, we repeated an analysis like that shown in Figs. 4
and S5 for different slopes of the environmental gradient and different values of V.
The sample curves in Fig. 4 show that the maximum adaptive (or maladaptive) effects
of directed (or random) gene flow occur at the edge of the population. Therefore, we
used the value of the total contribution of gene flow to ∂t q, computed at the edge of
the population, as our reference for measuring the significance of phenotype-optimal
dispersal in facilitating adaptation at range margins. The results are shown in Fig. 5.
We see that the total gene flow remains adaptive to the range margins, even when the
environmental gradient is fairly shallow or individuals are generalists. This implies
that phenotype-optimal dispersal is quite effective in compensating for the maladap-
tive effects of core-to-edge random gene flow. Yet the curves shown in Fig. 5, along
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Fig. 5 Effects of directed gene flow on local adaption at the edge of a species’ range. The contribution of
total (net) gene flow to the rate of change of the trait mean, ∂t q, at the edge of a species’ range is shown in
each graph for two different values of A. In (a), the species’ phenotype utilization variance takes its typical
value of V = 4Q2, and the magnitude of ∇xQ is made variable. In (b), the environmental gradient takes its
typical value of∇xQ = 0.2Q/X, and V is made variable. The rest of the model parameters take their typical
values given in Table 1, with m = 1. The data points in graphs (a) and (b) are obtained as follows. At each
value of ∇xQ in (a) and each value of V in (b), a simulation is performed for a period of time long enough
that the species’ range expansion dynamics reaches an approximate steady state. In each simulation, the
contribution of the total gene flow to ∂t q is computed for the right half of the species’ range, as the sum
of all terms (11a)–(11e) in (11). The graphs shown on the right of Figs. 4 and S5 show samples of such
computation results. The value of the total gene flow contribution that is obtained at the edge of the species’
range at the end of each simulation is then shown in graphs (a) and (b)

with our previous observations through Fig. 2, suggest that the adaption facilitated by
phenotype-optimal dispersal at range margins sufficiently enhances range expansion
capacity of the population primarily when environmental gradients are steep (slopes
greater than 1 Q/X).

We note that the curves associated with A = 0 are not shown in Fig. 5. In fact,
with A = 0 we only have random gene flow (random dispersal), the effect of which is
already known to be maladaptive at any nonzero values of the environmental gradient.
This means that the curves for A = 0 in Fig. 5 would take negative values for all
environmental gradients and utilization variances. The larger the gradient the more
maladaptive effects of random gene flow.

4.4 Phenotype-Optimal Dispersal Promotes Persistence Under Abrupt
Environmental Fluctuations

Wecarried out simulationswith periodic abrupt environmental shifts, to test the predic-
tion that phenotype-optimal dispersal could improve population survival under such
shifts. Rapid adaptation of individuals within a single generation, as facilitated by
adaptive dispersal strategies such as matching habitat choice, is predicted to be crucial
to the survival of a population under climate change, particularly when changes are
sharp and frequent (Edelaar and Bolnick 2019; Nicolaus and Edelaar 2018; Jacob et al.
2017; Bonte et al. 2012). To explore how phenotype-optimal dispersal will affect the
range dynamics of a species under abrupt climatic changes, we simulate our model
in a one-dimensional habitat with a steep trait optimum gradient of ∇xQ = 1.5 Q/X,
wherein the trait optimum periodically fluctuates (shifts) up and down with no change
in its gradient. For this, we initialize our simulation at t = 0 T with an established
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Fig. 6 Range dynamics of a species under periodic abrupt fluctuations in the environmental trait optimum.
Here,m = 1, ∇xQ = 1.5Q/X, and A takes different values in each graph. The rest of the model parameters
take their typical values given in Table 1. Graph (a) shows range dynamics without optimal dispersal, that
is A = 0X2/T. Graph (b) shows range dynamics with strong optimal dispersal, A = 10X2/T. Graph (c)
shows extinction of a species with the typical value A = 4X2/T due to high-amplitude environmental
fluctuations. In all graphs, the period of abrupt fluctuations in the trait optimum is 2T. At the beginning of
each period, the trait optimum Q is shifted up by a preset fluctuation amplitude and remains at this value for
the first half of the period. Then, it is shifted down by the same amplitude to the initial value and remains
at this value for the second half of the period. The fluctuation amplitude is set equal to 5Q in (a) and (b),
and equal to 9Q in (c). The thick orange curves indicate the initial curves at t = 0T and arrows show the
direction of evolution in time. In (a) and (b), curves are shown at every 1.5T, and two sample curves are
highlighted at t = 20T (in red) and t = 20.5T (in blue). In (c), curves are shown at 20 logarithmically
distributed time samples, with the first curve after the initial curve being shown at t = 0.1T. A sample
curve at t = 20T is also highlighted in red

population at the center of the habitat. This initial population is obtained as the solu-
tion curves at t = 4 T of a preliminary simulation similar to the one shown in
Fig. 1, with n(x, 0) = 0.8 sech(|x |/√2), q(0, 0) = Q(0), ∇xq(x, 0) = 0.7∇xQ, and
v(x, 0) = 1 Q2. The thick orange curves shown in Fig. 6 indicate the initial popula-
tions. To simulate abrupt temporal fluctuations in the environment, we uniformly shift
up the line of trait optimum Q by a certain fluctuation amplitude at the beginning of
a fluctuation period, and then shift it back down by the same amplitude at the middle
of the period. We repeat these fluctuations periodically, starting at t = 0 T, with a
relatively short period of 2 T.

With purely random dispersal plus environmental shifts, population density fluc-
tuates, but is always significantly lower than the density in a constant environment.
Figure6a shows the simulation results for an environmental fluctuation amplitude of
5 Q, when dispersal is only random, A = 0X2/T. The high level of maladaptation that
is abruptly induced in the population at t = 0 T, when the optimum gradient is shifted
up, quickly reduces both population density and expansion speed. Yet, directional
natural selection acts on the large deviation of trait mean from the trait optimum, and
the population gradually adapts to the new environmental optimum. However, since
the period of the fluctuations is relatively short, the population will not fully recover
its peak density before experiencing another abrupt change in the environment. The
periodically repeated loss-and-recovery dynamics of the population density eventually
reach a steady-state, at which the peak population density fluctuates between a fixed
high and a fixed low value as the populations expands its range. The red and blue
curves in Fig. 6a show samples of population density profiles at such high and low
extremes.
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Fig. 7 Steady-state mean population density of a species under periodic abrupt fluctuations in the envi-
ronmental trait optimum. Here, m = 1, ∇xQ = 1.5Q/X, and A takes different values in each graph. The
same periodic abrupt fluctuations as described in Fig. 6 is applied to the trait optimum Q, with the typical
amplitude of 5Q in (b) and (c) and variable amplitude in (a). Except for S and R, which are made variable
in (b) and (c), respectively, the rest of the model parameters take their typical values given in Table 1. At
each value of the variable parameter shown at the horizontal axis of each graph, and each value od A, the
simulation is run for a sufficiently long period of time so that the amplitude of the fluctuations in population
density of the species reaches a steady-state. The minimum and maximum values of such periodic fluctua-
tions (peaks of the blue and red curves as shown in Figs. 6a, b) are calculated near the end of the simulation,
and their average value is shown by different markers for each value of A, along with an interpolated solid
line. In (a), the steady-state mean value of the population density is shown with respect to changes in the
amplitude of the abrupt fluctuations in Q. In (b), the steady-state mean value of the population density is
shown with respect to changes in the strength of stabilization selection, S. In (c), the steady-state mean
value of the population density is shown with respect to changes in the maximum growth rate of the species,
R

Strong phenotype-optimal dispersal, A = 10X2/T, enhances both range expansion
speed and steady-state population density under the abrupt environmental fluctua-
tions that we simulate here. The results are shown in Fig. 6b. This is because the
large phenotype-environment mismatch perceived by individuals, immediately after
an abrupt shift in the optimum phenotype, creates a strong phenotypic potential for
the individuals to disperse to better-matching locations. As a result, the population can
rapidly adapt to the new environmental optimum when a change occurs, and hence
it loses much less of its density. However, in agreement with our observations in the
previous studies described above, the significant effects of optimal dispersal that we
observe here are in the presence of a steep environmental gradient of∇xQ = 1.5 Q/X.
In shallower (more typical) gradients, as the supplementary Fig. S6 shows, the effects
are much less noteworthy.

When environmental fluctuations are very large in amplitude, phenotype-optimal
dispersal can allow survival when a purely diffusing population goes extinct. When
the environmental shifts are too large, the density loss due to the excessive level of
maladaptation after each shift will be too high to be fully recovered by the adap-
tation that occurs afterwards. As a result, the population will not be able to reach
a persistent state and its density keeps decreasing due to the repeated changes in the
environment. Eventually, the population becomes extinct. Figure6c shows an example
of such extinction dynamics, when phenotype-optimal dispersal is still fairly strong,
A = 4X2/T, but environmental fluctuations occur with a large amplitude of 9Q. To
see if phenotype-optimal dispersal increases the chance of survival when amplitude
of the fluctuations is large, we repeat the simulation associated with Fig. 6 for differ-
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ent values of fluctuation amplitudes. For each value, we compute the average value
of the fluctuations in population density when it reaches a steady-state, and show it
in Fig. 7a. We see that when the amplitude of the environmental fluctuations is not
very large, optimal dispersal does not significantly increase the sustained density of
the population. At very large fluctuation amplitudes, however, optimal dispersal can
greatly increase the survival chance of the species.

Varying the strength S of natural selection shows that optimal dispersal increases
mean population density substantially only under very strong selection. Strong natu-
ral selection amplifies the effects of maladaptation induced by abrupt environmental
changes, as implied from the term S

2 (q − Q)2 in (10c). As a result, when S is large,
the population suffers from a greater density loss after each shift in the trait optimum.
However, larger values of S expedite adaptation to the new environment, due to (11f).
To see how these conflicting effects of stronger natural selection affect population
density under environmental fluctuations, and whether or not phenotype-optimal dis-
persal can be sufficiently advantageous to ensure population survival, we repeat the
simulation associated with Fig. 6 for different values of S and measure the steady-
state average value of the fluctuations in population density. The results are shown in
Fig. 7b. In general, we see that stronger natural selection reduces the sustained popu-
lation density under the abrupt fluctuations we simulated. When stabilizing section is
weak, as we typically observe in nature (Kingsolver et al. 2001), phenotype-optimal
dispersal does not substantially increase mean population density. However, under
very strong stabilizing selection, we observe that the population’s chance of survival
is substantially increased if its individuals disperse optimally.

Phenotype-optimal dispersal can allow a population with a low maximum intrin-
sic growth rate R to persist under environmental fluctuations that would drive it to
extinction if it carried out only diffusive dispersal. The maximum growth rate of the
population is a key factor in accelerating population density recovery following den-
sity losses caused by environmental changes. Slowly growing populations will have
a lower chance of recovering their full density before suffering another loss. To see
how this impacts the population survival, we repeat our simulations for different val-
ues of R and show the steady-state average value of population density fluctuations in
Fig. 7c.We see that slowly-growing populations maintain a significantly lower density
under environmental fluctuations, compared with fast-growing populations. However,
phenotype-optimal dispersal substantially increases the survival prospects of slowly-
growing species. In particular, with the relatively large fluctuation amplitude of 5 Q
that we considered in our simulation, we observe that, when R takes a relatively low
value of approximately 1 T−1, a randomly dispersing population becomes extinct
whereas a population with strong optimal dispersal can persist. We note that, with our
choice of generation time as the unit of time T, the maximum intrinsic growth rate is
argued to be a demographic invariant within some homogeneous taxonomic groups
(Niel and Lebreton 2005). In particular, a slow growth rate of R = 1 T−1 is observed
in a variety of taxa such as birds, sharks, and mammals (Niel and Lebreton 2005;
Dillingham et al. 2016; Shirani and Miller 2022), which are often sufficiently mobile
to evolve optimal dispersal strategies.
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4.5 Phenotype-Optimal Dispersal in Fragmented Habitats

We next ask whether optimal dispersal can enhance survival and range expansion
speed when the habitat is fragmented. In highly fragmented environments, the cost of
randomly moving from one habitat patch to reach another patch is particularly high.
Optimal habitat selection can also be harder in such environments, as optimal detection
of matching habitat patches can be substantially imperfect and dispersal mortality can
be higher (Cote et al. 2017). However, the enhanced local adaptation facilitated by
optimal dispersal can still be imagined to be sufficiently beneficial to compensate for
such costs. Therefore, it is argued that habitat choice behavior and adaptive dispersal
strategies should also be selected in fragmented landscapes, and might be essential
for the persistence of populations in such environments (Cote et al. 2017; Bonte et al.
2012). Here, we investigate whether or not phenotype-optimal dispersal can be of
particular importance to a population’s adaptation and range expansion capacity when
the available habitat is highly fragmented.

We first specify our simulated fragmented environment. We consider a two-
dimensional habitat � = (−50, 50) × (−50, 50), with a trait optimum profile
that changes linearly in the x1−direction (horizontal axis) and is constant in the
x2−direction (vertical axis). We set a relatively steep gradient of ∂x1Q = 1Q/X in
x1−direction. Since habitat loss directly affects the carrying capacity of the environ-
ment (Baguette et al. 2013), we simulate habitat fragmentation by setting a patchy
profile for the carrying capacity parameter K(x). This profile is shown in supplemen-
tary Fig. S7, and its specific pattern can also be approximately seen through the last
frames (at t = 40 T) in Fig. 8. If patch sizes are large in both directions, relative
to the average (random) dispersal distance per generation, the range dynamics inside
each patch is expected to be similar to that in the continuous habitat cases we studied
before. Therefore, to make the effects of fragmentation sufficiently pronounced, we
consider relatively narrow patches of width 2 X—noting that the random dispersal
coefficient D takes the typical value of 1I2 X2/T, where I2 denotes the 2 × 2 identity
matrix. We let the length of these rectangular patches take values between 10 X and
15 X. On the right half of the habitat, we arrange the patches horizontally, so that they
are stretched in the direction of the environmental gradient. On the left half of the
habitat, we arrange the patches vertically so that they are stretched perpendicular to
the environmental gradient. We consider this specific layout to further observe if the
alignments of the patches with the environmental gradient can have a particular impact
on the range expansion dynamics. We arrange the rectangular patches side-by-side,
with no gap between them. However, over each patch, we smoothly decrease the value
of K from 1 N/X2 at the patch’s center to 0.05 N/X2 at the patch’s edge. This leaves
fairly inhabitable regions of low carrying capacity between patch cores, as shown in
Fig. S7. Finally, we make an exception for the size of the patch located at the center
of the habitat, and let it be large. We initialize the population in this central patch, so
that it can get established before expanding through the highly fragmented areas.

When dispersal is entirely random, population density drops off significantly over
the patches and mismatch between the trait mean and trait optimum grows sharply
from the center to the edge of the patches. Figure8 shows the simulation results for
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Fig. 8 Range expansion of a species in a fragmented two-dimensional habitat. Here, m = 2, the environ-
mental gradient along the x2-axis is zero, and the environmental gradient along the x1-axis is ∂x1Q = 1Q/X.
Habitat fragmentation is simulated by considering a patchy profile for the carrying capacity K, as shown
in supplementary Fig. S7. Parameter A takes different values for the results shown in the upper and lower
panels. The rest of the parameters take their typical values given in Table 1. Four frames of the spatial profile
of the species’ population density are shown in each panel as the species’ range evolves in time. The upper
panel shows range expansion of a species with no optimal dispersal, A = 0X2/T, whereas the lower panel
shows the range expansion of the species with strong optimal dispersal, A = 10X2/T. For comparison
purposes, the same simulations but with constant carrying capacity of K = 1 N/X2 are performed and the
leftmost and rightmost edges of the population are indicated by blue bars in each plot. It should also be
noted that the final (approximate steady-steady) profile of the phenotype-environment mismatch and trait
variance at t = 40T are also shown in supplementary Figs. S8 and S9

a species with only randomly dispersing individuals (upper panel) and for a species
with phenotype-optimal dispersal (lower panel). To make a comparison with range
expansion in a continuous habitat, we also perform the simulations with a constant
carrying capacity of K = 1 N/X2 and indicate the leftmost and rightmost edges of the
population by blue bars in Fig. 8. The population establishes itself in the central patch
to its almost maximum capacity of approximately 1 N/X2. However, it spreads over
the fragmented regions with much lower density. This is mainly due to a significant
level of maladaptation that is maintained by the homogenizing effect of random gene
flow. Figure S8 shows the phenotype-environment mismatch (q − Q) at the end of
the simulations, when the mismatch has approximately reached a steady state over the
whole habitat. The steady-state level of mismatch is low at the center of the patches.
However, it increases rather sharply towards their edges. Since patches are relatively
narrow, this results in a relatively high level of overall maladaptation over a large area
of the patches, and hence the significant loss of population density.

Phenotype-optimal dispersal raises the rate, though not the steady-state level, of
adaptation within habitat patches. It thereby enhances the transient expansion dynam-
ics of the population, as observed through the increased expansion speed in the lower
panel of Fig. 8. However, we observe that optimal dispersal does not significantly
improve the steady-state level of adaptation (shown in Fig. S8) and population density
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within the patches. The maximum population density that we observe in patches of
the fragmented region at t = 40 T is approximately 0.45 N/X2 when A = 10X2/T,
which is only slightly larger than the maximum density of 0.41 N/X2 observed when
A = 0X2/T. This is because, due to the narrowwidths of the patches, the directed gene
flow created by phenotype-optimal dispersal is not sufficiently strong to effectively
compensate for the maladaptive core-to-edge random gene flow within the patches.

With phenotype-optimal dispersal, the rate of range expansion in the simulated
fragmented habitat almost equals that in a continuous habitat; although the population
density in the fragmented habitat remains significantly lower. This is implied by the
locations of the blue bars in Fig. 8, which also coincide with the leftmost and rightmost
edges of the population in the fragmented habitat. Notably, we do not observe any
effects of phenotype-optimal dispersal that particularly enhance the range expansion
capacity of the populationwhen a habitat is fragmented, comparedwith the continuous
habitat case.

With phenotype-optimal dispersal, the maximum steady-state (t = 40 T) popula-
tion density on vertical patches is about 10 percent higher than the maximum density
on horizontal patches. By contrast, when dispersal is only random, the particular lay-
out of the patches—horizontally arranged on the right and vertically arranged on the
left—does not result in any noticeable asymmetry in population’s expansion to each
side of the habitat. Slightly better adaptation, and lower trait variance are also observed
under optimal dispersal within vertical patches. This can be explained by noting that
the vertical patches in our simulation are stretched perpendicular to the gradient of the
trait optimum. Therefore, optimal movements in the direction of the environmental
gradient lead to a distribution of relatively close phenotypes along each of the vertical
patches. Since the patches are also relatively narrow, the overall closeness of pheno-
types in vertical patches decreases the maladaptive impacts of the random component
of gene flowwithin the patches. As a result, population density can grow to (somewhat)
higher levels within vertical patches.

Finally, in fragmented as well as in continuous habitat, phenotype-optimal dispersal
markedly reduces trait variation within the patches. Figure S9 shows the final profiles
of trait variance at t = 40 T. In the presence of a steep environmental gradient, as we
consider here, the reduced phenotypic variability within patches results in substantial
increase in variability among the patches. Although not included in our model, it can
be argued that this enhanced genetic differentiation between the patches contributes
to reproductive isolation between the local populations. Large genetic differences
between the patches can reduce the propensity of individuals to move between the
patches, to avoid mating with individuals in a genetically novel population (Garant
et al. 2007; Bolnick and Otto 2013; Cote et al. 2017; Benkman 2017). The reduced
movements between the patches and reduced genetic variation within the patches can
then promote the evolution of assortative mating, which further reinforces the repro-
ductive isolation between the patches. This process can eventually lead to sympatric
speciation in the habitat (Nicolaus and Edelaar 2018; Lenormand 2002; Garant et al.
2007; Bolnick and Otto 2013).
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5 Discussion

Matching habitat choice has been hypothesized to have distinctive evolutionary effects
on species’ range dynamics and genetic structure (Edelaar et al. 2008; Nicolaus and
Edelaar 2018; Edelaar and Bolnick 2019; Bolnick and Otto 2013; Jacob et al. 2017).
Because of the potentially complex interactions between matching habitat choice and
other eco-evolutionary forces, intuitive or verbal predictions of its effectsmust be taken
skeptically.We therefore proposed and numerically studied a deterministic PDEmodel
incorporating a specific type of matching habitat choice we called phenotype-optimal
dispersal, together with other eco-evolutionary forces. Our goal was to quantify the
environmental and other conditions under which phenotype-optimal dispersal has sub-
stantial effects on the spatial dynamics of population density as well as of the mean
and variance of a quantitative trait. To accomplish this, we compared the results of
simulations incorporating a combination of phenotype-optimal and random (diffusive)
dispersal with the results of simulations incorporating random dispersal only.

A key novel aspect of our model, among studies of matching habitat choice,
is that it is a deterministic continuum model, particularly suitable for model-
ing populations that disperse over (mostly) nonfragmented habitat. We also note
that the strength of phenotype-optimal dispersal in our model depends on both
phenotype-environment mismatch and environmental gradient. Dependence only on
the phenotype-environment mismatch can result in redundant movements in shallow
gradients which may be unlikely to evolve as a matching habitat choice strategy in
nature. Our model also incorporates phenotype-dependent competition. Competition
tends to inflate phenotypic variance. At the same time,matching habitat choice reduces
local phenotypic variance, which should intensify competition. We used our model to
study the nonintuitive range dynamics that results from the interaction between these
two counteracting forces.

Throughour extensive computational investigations,we found effects of phenotype-
optimal dispersal on diverse measures of persistence, range expansion, adaptation,
and trait variance. These effects were generally important only in steep environmental
gradients or when specialization was very pronounced, and in particular for slowly-
growing species.

5.1 Implications for Adaptation, Range Dynamics, and Speciation

In a static environment with steep gradient, we found as expected that phenotype-
optimal dispersal facilitates rapid adaptation of the individuals (and the population)
within a single generation. To the extent that the relevant trait is heritable and the
environmental gradientmonotone, this should improve the fitness of subsequent gener-
ations and cause adaptive evolution.Optimal dispersal also lowers phenotypic variance
both at central and peripheral populations, reducing further the need for natural selec-
tion to eliminate unfit phenotypes. In light of these adaptive effects, it is noteworthy
that we found the gene flow created in the presence of optimal dispersal always to be
adaptive; see Figs. 4 and 5. Specifically, the directed gene flow induced by optimal dis-
persal effectively compensates for the maladaptive (swamping) effects of asymmetric
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random gene flow at range margins. As a result, we found that (in steep environmental
gradients) optimal dispersal increased the speeds of traveling waves modeling range
expansion; see Figs. 1, and 2. It had little effects on peak population density behind
the wavefront, but it significantly increased the growth rate of the population during
transient states of population establishment. These effects also broadly persisted in
fragmented habitats; see Fig. 8.

Genetic swamping of peripheral populations by the gene flow from central popu-
lations has been hypothesized, for a long time, as a major cause of range limits—by
destabilizing the migration-selection equilibrium at range margins (Haldane 1956;
Mayr 1963; Kirkpatrick and Barton 1997; Sexton et al. 2009; Lenormand 2002). This
hypothesis has been challenged by several theoretical and empirical studies (Case and
Taper 2000; Shirani andMiller 2022;Kottler et al. 2021).Wenote that the present study
also found no conditions—even in fragmented habitat—that led to a stable localized
population (“range pinning”) in a linearly changing environment. Rather, populations
either advanced without limit in a traveling wave or went extinct under violent envi-
ronmental fluctuations. Indeed, our finding that gene flow to the wavefront was always
adaptive provides further theoretical evidence that range pinning via genetic swamp-
ing should be rare in nature. This finding runs contrary to the prediction of Kirkpatrick
and Barton (1997) based on a PDE model with constant variance, but consistent with
the predictions of Barton (2001) with evolving variance, Case and Taper (2000) with
competition and constant variance, and of the authors with competition and evolving
variance (Shirani and Miller 2022). It is also consistent with the earlier observation
of Holt (1987) that habitat selection should often vitiate the swamping effects of gene
flow as a constraint on the evolution of local adaptation. Empirical results reviewed by
Kottler et al. (2021) have also found limited support for asymmetry in (total) center-
to-edge gene flow, and very little evidence that such gene flow reduces mean fitness
in edge populations.

We also note that rapid adaptation due to phenotype-optimal dispersal is particularly
important in temporally changing environments, as it remarkably enhances population
persistence under sharp environmental fluctuations; see Figs. 6 and S6. This can be
specifically important for slowly-growing species, such as birds and mammals, since
they cannot recover sufficiently fast from population losses due to sharp changes
in the environment; see Fig. 7. Therefore, our results support existing arguments for
takingmatching habitat choice into account when predicting the response of species to
climate-induced environmental fluctuations (Pellerin et al. 2019; Edelaar and Bolnick
2019; Nicolaus and Edelaar 2018; Edelaar and Bolnick 2012; Jacob et al. 2017; Bonte
et al. 2012).

It isworth noting that Pellerin et al. (2019) predict, based on theirmodel, that climate
change can result in contraction and fragmentation of the species’ range. By contrast,
we do not see range contraction in our results even in the absence of phenotype-
optimal dispersal (with pure random dispersal). Extinction by strong environmental
fluctuations in our model is in the form of vanishing population density rather than
contracting range. It is possible that the range contraction or fragmentation observed by
Pellerin et al. (2019) could, to some extent, be due to the discrete patchy environment
in their model and discrete movements of their individuals (they jump from one patch
to the other at the end of each year). This provides an example, specifically in the
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context of matching habitat choice, of how range dynamics in continuous habitats can
exhibit behavior unlike that in discrete habitat models.

Finally, we note that in fragmented habitats, the reduced within-population trait
variation and enhanced local adaptation resulting from optimal dispersal increased
the level of trait variation between local populations. Thus our results provide further
quantitative theoretical support for the predictions that matching habitat choice can
drive reproductive isolation, promote assortative mating, and contribute to sympatric
or parapatric speciation (Maynard Smith 1966; Endler 1977; Rice and Salt 1988,
1990; Rice and Hostert 1993; Holt 1987; Coyne 1992; Kirkpatrick and Ravigné 2002;
Bolnick and Otto 2013; Nicolaus and Edelaar 2018; Edelaar et al. 2008, 2023; Berner
and Thibert-Plante 2015; Ravigné et al. 2009).

5.2 Environmental Gradients and the Evolution of Dispersal

The effects of environmental gradients and random dispersal on species range evo-
lution are interlinked. When dispersal is random, the presence of an environmental
gradient makes the random core-to-edge gene flow maladaptive, thereby hindering
local adaptation at range margins. Therefore, compared with range expansion in a
homogeneous environment, the presence of an environmental gradient reduces range
expansion speed. The steeper the gradient, the slower the range expansion speed; see
Fig. 2a for A = 0. Fixing the environmental gradient at a nonzero constant value, the
same effect is observed by increasing the dispersal rate. That is, the higher the disper-
sal, the stronger the effect ofmaladaptive gene flow, and the slower the range expansion
speed (Shirani and Miller 2022; Benning et al. 2024). Although this observation is
counterintuitive, as it may be expected that higher dispersal should increase expansion
speed, it can be understood by the fact that the steepness of the environmental gradi-
ent and the rate of dispersal are linked through a rescaling of the geographic space.
In fact, when dispersal is only random (A = 0 in our model), a change

√
D �→ k

√
D

in the dispersal coefficient in the equation of our model (10)–(12) can be absorbed by
a rescaling x �→ x/k of the space variable, and consequently an equivalent change
∇xQ �→ k∇xQ in the environmental gradient (Shirani and Miller 2022, Remark 3).

In the presence of an environmental gradient, the gene flow created by random
dispersal increases local phenotypic variation. The steeper the gradient the higher
the level of phenotypic variance; see Fig. 2a for A = 0. Our results show that, in
extremely steep gradients, inflated phenotypic variation substantially intensifies the
phenotypic load that selection imposes on a population’s growth rate. As a result,
the population density declines sharply with increases in the environmental gradient;
see Fig. 2a for A = 0. In particular, the species fails to survive when the gradient
exceeds a critical level given by (18). Based on the link we discussed above between
the effects of dispersal and environmental gradient, the same pattern of changes in trait
variance and population density as shown in Fig. 2a (with A = 0) is also observed
versus changes in

√
D; see also Remark 3 by Shirani and Miller (2022). That is,

trait variance increase with increases in dispersal, and when dispersal is exceedingly
large, population density declines sharply with increases in dispersal. Although the
critical gradients we calculated are likely too steep to be plausible for the majority of
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species (unless possibly representing physical barriers), our results suggest that slowly-
growing species under excessively strong selection are quite likely to experience such
critical gradients in nature; see Remark 6 and Fig. 3. This means that, this class of
(vulnerable) species are at high risk of extinction in steep environmental gradients if
they disperse randomly over long distances.

In light of the link between random dispersal and environmental gradients in hin-
dering local adaption and reducing expansion speed, it is argued that dispersal is
strongly selected against in presence of an environmental gradient (Holt 1985). Using
an individual-basedmodel that allows for the evolution of both a fitness-related (niche)
trait and a trait that controls dispersal ability, Benning et al. (2024) have shown that the
presence of an environmental gradient opposes the evolution of increased dispersal
during invasions. If the gradient is steep, it can even result in the evolution of reduced
dispersal. This in fact follows from the link between dispersal and environmental
gradients we discussed above. Reduced random dispersal is equivalent to a reduced
environmental gradient, and hence may be expected to cancel out the effects of steep
gradients. However, this conclusion relies on an important assumption, that disper-
sal evolves as random movements. Although there are stochastic and extrinsic forces
that influence dispersal (Lowe and McPeek 2014), it is not very realistic to assume
species evolve random dispersal in steep environmental gradients. By contrast, our
results suggests that steep environmental gradients indeed play a key role in evolu-
tion of increased phenotype-optimal (adaptive) dispersal, which can then effectively
compensate for the disruptive effects of the gradients on local adaptation and range
expansion. In view of our results and those of Benning et al. (2024), we can hence
hypothesize that there may be different thresholds in the steepness of the gradients
that promote evolution of different dispersal strategies. Significantly steep gradients
beyond a threshold may promote the evolution of optimal (directed) dispersal. Mod-
erately steep gradients below a threshold may instead lead to the evolution of reduced
dispersal.

5.3 Phenotype-Optimal Dispersal in Nature

Currently, evidence for matching habitat choice in nature is limited. This may be partly
because this mode of adaptation has been overlooked due to a primary focus on natural
selection (Edelaar and Bolnick 2019). However, matching habitat choice may truly be
rare because of, for example, high cost for its evolution, inability of species’ individuals
to obtain information about their performance and matching habitats, dependence of
adaptation on multiple uncorrelated traits, and movement restrictions imposed by
strong territoriality (Edelaar et al. 2017; Nicolaus and Edelaar 2018). Our finding
that environmental gradients must be steep for phenotype-optimal dispersal to be
consequential suggests an additional non-artifactual reason why this dispersal mode
has rarely been observed. Further, we note that we did not explicitly include dispersal
costs in our model. Such costs should make phenotype-optimal dispersal even less
likely to evolve in shallow gradients. Yet we should note that our estimates of typical
values for steepness of environmental gradients are based on limited data (Shirani
and Miller 2022, Sect. 3.2). This is because environmental trait optima and their
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gradient are hard to measure, and the available measurements are often based on
different choices of units which make steepness comparisons almost impossible. Our
particular choices of units (see Sect. 2.5) can provide sufficient generality for future
measurements, based on which better estimates for typical steepness of gradients can
be obtained.

The current scarcity of evidence for matching habitat choice may also be because
efforts for finding such evidence have not been focused on the most promising taxa.
As we discussed before, our results suggests that phenotype-optimal dispersal should
be more prevalent among highly-mobile slowly-growing species which are possibly
exposed to sharp, strong, and frequent changes in their environment. Based on this
observation, nomadic birds (Benkman 2017) and long-range dispersing mammals
such as seals, cougars, elephants, buffaloes, rhinoceros, giraffes, and wolves could be
examples of species that might specifically benefit from evolving phenotype-optimal
dispersal. Microorganisms that live in high chemical or temporal gradients may also
optimally move to better matching environment through taxis.

Matching habitat choice is not straightforward to detect in nature. Our results could
suggest two preliminary considerations for planning of studies that aim to detect
or rule out phenotype-optimal dispersal in the field or laboratory; see, for example,
(Edelaar andBolnick 2012; Camacho et al. 2020). First, the impacts of gene flowon the
fitness of individuals should specifically be observed at population’s range margins.
As we discussed before, phenotype-optimal dispersal results in adaptive gene flow
to range margins, which is otherwise expected to be maladaptive when dispersal is
predominantly random. Second, the level of trait variation should be observed at
the core of the population. Phenotype-optimal dispersal can reduce trait variation to
strikingly low levels that are unlikely to bemaintained by realistically strong selection.

Finally, our results provide a cautionary note. The microcosms (Jacob et al. 2017)
or microclimatic mosaic arenas (Karpestam et al. 2012) that are usually constructed
in experiments to detect directed dispersal behavior of a model species may have
considerably steeper environmental gradients than those likely to prevail in the species’
natural habitat. Since our results identify a steep environmental gradient as a key factor
for evolution of matching habitat choice, we note that researchers should ensure (when
possible) that the difference between experimental and natural habitat gradients is
insignificant, or use caution in interpreting the experimental results.

5.4 Future Research Directions

It is important to note that phenotype-optimal dispersal, the type of matching habitat
choice modeled in the present work, incorporates only local environment sensing
(assessment). Nonlocal environment sensing, in which an individual can assess the
environment at some distance from its location, could readily be incorporated into
extensions of our model. Such extensions would be worth studying in part because
nonlocal sensingwill reduce individuals’ exploratorymovements andwill increase the
chance of settling in globally optimal habitat location. It may be plausible that with
nonlocal sensing, the effects of matching habitat choice we have identified here would
be significant over shallower environmental gradients. The present study suggests that
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with purely local environment sensing,matching habitat choice should not be a favored
adaptivemechanism inmany environments. Sincewe have performed all our studies in
a linear environment, in which local and global sensing will have the same outcomes,
we still suspect that our hypothesis remains valid even in case where individuals
have nonlocal assessment capabilities. Studies with nonlocal sensing, possibly with
nonlinear habitat gradients, would help test the robustness of our hypothesis more
rigorously.

Phenotypic adaptation to a heterogeneous environment can occur through several
modes, including habitat choice, natural selection, and phenotypic plasticity. How
strong each of these modes is relative to the others, how they interact, and under
what conditions they are more favored are questions that are not yet fully addressed
(Scheiner et al. 2022; Edelaar and Bolnick 2019; Edelaar et al. 2017). We included
phenotype-optimal dispersal and selection in our model. We observed that strong
optimal dispersal tends to reduce trait variation relatively fast, leaving less genetic
variation for selection to act upon. When a population experiences a sharp change
in the environment, it suffers from a strong selective load. We observed that optimal
dispersal is quite effective in mitigating the effects of this load and facilitating rapid
recovery. This implies that, in rapidly changing environments, natural selection can
indeed increase the potential for evolution of phenotype-optimal dispersal. Detailed
analysis of the interactions between natural selection andmatching habitat choice, and
further extensions to include other modes such as phenotypic plasticity, are important
directions for future work. The extensive literature on the evolution of phenotypic
plasticity and its effects on range dynamics (Schlichting and Pigliucci 1998; DeWitt
and Scheiner 2004; Scheiner 1993; DeWitt et al. 1998; Agrawal 2001; Pigliucci 2005;
Ghalambor et al. 2007; Chevin et al. 2010; Chevin and Lande 2011; Scheiner et al.
2012; Valladares et al. 2014;Murren et al. 2015; Forsman 2015; Chevin andHoffmann
2017; Schmid et al. 2019; Turko andRossi 2022; Eriksson andRafajlović 2022) aswell
as the preliminary results on coevolution and comparison of phenotypic plasticity with
matching habitat choice (Scheiner 2016; Edelaar et al. 2017; Nicolaus and Edelaar
2018; Lowe and Addis 2019; Boyle and Start 2020) can help guide this topic of
research.

Appendix A: Perceived Environmental Gradient

The perceived gradient partially defined in (9) over a smaller habitat�δ requires certain
technical considerations near the boundary of the habitat so that it can be extended to
thewhole habitat�. To include such an extension,we assume that the individuals of the
species are able to perceive the boundary of the habitat once they become sufficiently
close to it (closer than the constant δ), and they avoid crossing the boundary. This
means that, we assume that the normal component of ∇̃xQ to the boundary of � is
zero. Over a neighborhood of width δ around the boundary, we smoothly extend the
∇̃xQ defined by (9) so that its normal component to the boundary gradually vanishes
to zero. As a result, the extended ∇̃xQ will be tangential to the boundary of �. For
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this, we first define the following cut-off function

χδ(y) =
{
exp

(
y2

y2−δ2

)
, |y| < δ

0, |y| ≥ δ
(19)

which smoothly declines from 1 at y = 0 to 0 at |y| = δ.
Now, for a rectangular habitat � = (a1, b1) × · · · × (am, bm), we extend (9) as

∇̃xQ(x) := 

 + ‖∇xQ(x)‖Rm

(
∇xQ(x) −

m∑
i=1

χδ(xi − ai )∂
+
xiQ(x |ai )êi

−
m∑
i=1

χδ(xi − bi )∂
−
xiQ(x |bi )êi

)
, x ∈ �.

(20)

where êi denotes the i th standardunit vector inR
m, and x |ci := (x1, . . . , ci , . . . , xm) =

x−(xi −ci )êi . Moreover, ∂+
xiQ(z) and ∂−

xiQ(z) denote, respectively, the right-hand and
left-hand partial derivatives of Q with respect to xi evaluated at a point z. The summa-
tion terms in (20) gradually remove the normal component of ∇xQ to the boundaries
xi = ai and xi = bi over a δ-neighborhood of the boundaries, so that ∇̃xQ(x) even-
tually becomes completely tangent to the entire boundary of �. The removal of the
normal components of the perceived gradient ∇̃xQ(x) to habitat boundary automati-
cally results in no phenotype flux through the boundary due to the directed dispersal
term (1b). Therefore, the no-flux (reflecting) boundary conditions that we discussed
in Remark 1 and Appendix A.5 of our previous work (Shirani and Miller 2022) can
also be applied to the model (10)–(12) we present in this work. If a periodic boundary
condition is considered across the j th spatial direction, then the terms associated with
i = j are excluded from the summation terms in (20). This is because imposing peri-
odic boundary condition in a spatial direction is equivalent to considering a habitat
that is periodically extended in that direction.

For the one-dimensional habitats� = (a, b) used in the results presented in Figs. 1–
7, the perceived environmental gradient (20) can be written as

∇̃xQ(x) := 

 + ‖∇xQ(x)‖R

(
∇xQ(x) − χδ(x − a)d+

x Q(a) − χδ(x − b)d−
x Q(b)

)
,

x ∈ �. (21)

where d+
x Q(z) and d−

x Q(z) denote, respectively, the right-hand and left-hand deriva-
tives of Q with respect to x evaluated at a point z. Note that ‖∇xQ(x)‖R = |dxQ(x)|.

For the two-dimensional habitat � = (a1, b1) × (a2, b2) used in the results pre-
sented in Fig. 8, we considered reflecting boundary conditions at x1 = a1 and x1 = b1,
and periodic boundary conditions across the x2-axis. Therefore, the perceived envi-
ronmental gradient for this problem can be written as
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∇̃xQ(x) := 

 + ‖∇xQ(x)‖
R2

(
∇xQ(x) − χδ(x1 − a1)

[
∂+
x1Q

(
(a1, x2)

)
0

]

− χδ(x1 − b1)

[
∂−
x1Q

(
(b1, x2)

)
0

] )
, x ∈ �. (22)

In all of the numerical simulations presented in this work, we set the maximum
perceived gradient to be  = 1Q/X, and we assume the individuals can sense the
habitat boundary at a distance smaller than or equal to δ = 2X.

Appendix B: Model Derivation

We use the basic equation (1) to derive the equations of our model (10)–(12). As the
constructing components of the basic equation (1), we use the intrinsic growth rate
(5), the perceived dispersal force (8) which substitutes for −∇xθ in (1b), and the rate
of mutational changes ∂

(M)
t φ given by Equation (20) in our previous work (Shirani

and Miller 2022). Our derivation relies on the major assumptions (i)–(viii) provided
in Sect. 2.1.

The basic equation (1) that we use to derive the equations of our model differs
from the Equation (25) in our previous work (Shirani and Miller 2022) only in the
inclusion of the optimal dispersal term (1b). As a result, applying the derivation steps
that we perform below to the rest of the terms, (1a), (1c), and (1d), will give the terms
(10a), (10c), (11a), (11b), (11e), (11f), (12a)–(12c), and (12f), whose derivation can
be obtained as a single-species version of our general multi-species model presented
in our previous work; see, for example, Equations (12)–(14) given in that work for a
one-dimensional habitat. Therefore, we exclude the derivation of these terms from our
work here, and refer the reader to our previous work for details of those derivations.
In the following, we show the derivation of the new terms (10b), (11c)–(11e), (12d)
and (12e) that model the effects of optimal dispersal.

We first substitute (8) into the basic equation (1) to write

n(t + τ)φ(t + τ, p) − n(t)φ(t, p) = −τ div

(
A n(t)φ(t, p)

p − Q

V
∇̃xQ

)
+ . . . ,

(23)

where “. . . ” denotes the terms we have excluded from our derivation, as stated above.
Note that, for simplicity of exposition, in writing (23) and the rest of the derivations
that follow, we do not explicitly show the dependence of the variables and parameters
on x .

Now, we integrate both sides of (23) with respect to p over R to obtain

n(t + τ) − n(t) = −τ div

(
A n(t)

q(t) − Q

V
∇̃xQ

)
+ . . . . (24)
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Dividing both sides of (24) by τ and taking the limit as τ → 0 yields (10).
To derive (11), we multiply both sides of (23) by p and integrate the result with

respect to p over R. Noting that
∫
R
p2φ(t, p)dp = v(t) + q2(t), we obtain

n(t + τ)q(t + τ) − n(t)q(t) = −τ div

(
A n(t)

v(t) + q2(t) − q(t)Q

V
∇̃xQ

)
+ . . . .

which, after dividing by τ and taking the limit as τ → 0, gives

∂t (n(t)q(t)) = − div

(
A n(t)

v(t) + q2(t) − q(t)Q

V
∇̃xQ

)
+ . . . . (25)

Now, we use the product rule on the left-hand side of (25) and substitute (10) into the
result to obtain

∂t q(t) = 1

n(t)

[
− div

(
A n(t)

v(t) + q2(t) − q(t)Q

V
∇̃xQ

)

+ q(t) div

(
A n(t)

q(t) − Q

V
∇̃xQ

)]
+ . . . . (26)

Denoting the first term within the brackets in (26) by [(26).1st], we can write

[(26).1st] := − div

(
A n(t)

v(t) + q2(t) − q(t)Q

V
∇̃xQ

)
(27a)

= − div

(
A n(t)

q(t)
(
q(t) − Q

)

V
∇̃xQ

)
− div

(
A n(t)

v(t)

V
∇̃xQ

)
(27b)

= − q(t) div

(
A n(t)

q(t) − Q

V
∇̃xQ

)
−

〈
∇xq(t) , A n(t)

q(t) − Q

V
∇̃xQ

〉

Rm

− n(t) div

(
A

v(t)

V
∇̃xQ

)
−

〈
∇x n(t) , A

v(t)

V
∇̃xQ

〉

Rm
, (27c)

where the product rule for divergence of a scalar field times a vector field has been
applied to each of the two divergence terms of (27b) to obtain (27c). For this, q(t) has
been considered as the scalar field in the first divergence term in (27b), and n(t) has
been considered as the scalar field in the second divergence term. Now, we substitute
the result into (26) for the first term within the brackets and obtain (11).

Finally, to derive (12), we first note that

v(t + τ) =
∫

R

(p − q(t + τ))2φ(t + τ, p) dp

=
∫

R

p2φ(t + τ, p) dp − q2(t + τ, p). (28)
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We multiply both sides of (28) by n(t + τ) and use (23) to write

n(t + τ)v(t + τ) =
∫

R

p2n(t + τ)φ(t + τ, p) dp − n(t + τ)q2(t + τ, p)

= −τ

∫

R

p2 div

(
A n(t)φ(t, p)

p − Q

V
∇̃xQ

)
dp

+ n(t)
∫

R

p2φ(t, p) dp − n(t + τ)q2(t + τ) + . . .

= −τ div

(
A n(t)

[∫

R

p3 − pQ

V
φ(t, p) dp

]
∇̃xQ

)

+ n(t)
(
v(t) + q2(t)

) − n(t + τ)q2(t + τ) + . . .

= −τ div

(
A n(t)

3v(t)q(t) + q3(t) − v(t)Q − q2(t)Q

V
∇̃xQ

)

+ n(t)v(t) −
(
n(t + τ)q2(t + τ) − n(t)q2(t)

)
+ . . . .

Next, we subtract n(t)v(t) from both sides of the above equation, divide both sides
by τ , and take the limit as τ → 0. We obtain

∂t (n(t)v(t)) = − div

(
A n(t)

3v(t)q(t) − v(t)Q + q2(t)(q(t) − Q)

V
∇̃xQ

)

− ∂t

(
n(t)q2(t)

)
+ . . . . (29)

If we use the product rule to write ∂t (n(t)v(t)) = n(t)∂tv(t) + v(t)∂t n(t), wherein
∂t n(t) is given by (10), and split the divergence term in (29) into three terms, we can
write

n(t)∂tv(t) = v(t) div

(
A n(t)

q(t) − Q

V
∇̃xQ

)
(30a)

− div

(
A n(t)

2v(t)q(t)

V
∇̃xQ

)
(30b)

− div

(
A n(t)

v(t)(q(t) − Q)

V
∇̃xQ

)
(30c)

− div

(
A n(t)

q2(t)(q(t) − Q)

V
∇̃xQ

)
(30d)

− ∂t

(
n(t)q2(t)

)
+ . . . . (30e)

Note that, in the derivation of (30), the terms involving (10a) and (10c) are absorbed
into the “. . . ” in (30e). This is because these terms are not associated with themodel of
phenotype-optimal dispersal and, as we stated above at the beginning of this section,
they are handled in the derivations following the same steps taken in our previous
work.
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Now, for (30b), we use the product rule for divergence of a scalar field times a vector
field, with the scalar field n(t)q(t), along with the product rule for ∇x

(
n(t)q(t)

)
, to

write

(30b) = − 2 n(t)q(t) div

(
A

v(t)

V
∇̃xQ

)
− 2

〈
∇x

(
n(t)q(t)

)
, A

v(t)

V
∇̃xQ

〉

Rm

= − 2 n(t)q(t) div

(
A

v(t)

V
∇̃xQ

)
− 2

〈
q(t)∇xn(t) , A

v(t)

V
∇̃xQ

〉

Rm

− 2

〈
n(t)∇xq(t) , A

v(t)

V
∇̃xQ

〉

Rm
. (31)

Similarly, applying the product rule for the divergence in (30d), keeping in mind q2(t)
as the scalar field, and noting ∇xq2(t) = 2q(t)∇xq(t), we have

(30d) = −q2(t) div

(
A n(t)

q(t) − Q

V
∇̃xQ

)

− 2

〈
q(t)∇xq(t) , A n(t)

q(t) − Q

V
∇̃xQ

〉

Rm
, (32)

For (30e), we use (10) and (11) to write

(30e) = q2(t)∂t n(t) + 2n(t)q(t)∂t q(t)

= q2(t) div

(
A n(t)

q(t) − Q

V
∇̃xQ

)
+ 2 n(t)q(t) div

(
A

v(t)

V
∇̃xQ

)

+ 2

〈
q(t)∇xn(t) , A

v(t)

V
∇̃xQ

〉

Rm

+ 2

〈
q(t)∇xq(t) , A n(t)

q(t) − Q

V
∇̃xQ

〉

Rm
+ . . . . (33)

Note that, in writing the first inner product term in (33), we used n(t)∇x log n(t) =
∇xn(t). Moreover, similar to what we noted above, we have absorbed into the “…” in
(33) all those terms that do not correspond to themodel of phenotype-optimal dispersal
in (10) and (11).

Finally, denoting the right-hand side of (30a) by (30a).RHS and using the product
rule for divergence (with the scalar field v(t)), we can write

(30a).RHS = div

(
A n(t)v(t)

q(t) − Q

V
∇̃xQ

)
−

〈
∇xv(t) , A n(t)

q(t) − Q

V
∇̃xQ

〉

Rm
.

(34)

We then obtain (12) by substituting (31), (32), (33), and (34) into (30) and simplifying
the result. This completes the derivation of the model.
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Appendix C: Equations of Fully-Adapted Equilibrium Population

Here, we show the derivation of the equilibrium equations (15) and (16) for a one-
dimensional geographic space, m = 1. As noted before, except in the close vicinity of
the habitat boundary, the equilibrium population density n∗ and the equilibrium trait
variance v∗ are spatially homogeneous, and the equilibrium trait mean q∗ is equal
to the trait optimum. Therefore, sufficiently far from the habitat boundary, we have
∇xn∗ = 0, q∗ = Q, and ∇xv

∗ = 0. Further, div(∇xq∗) = div(∇xQ) = 0 due to the
assumption that Q is linear.

Now, with ∇xn∗ = 0 and q∗ = Q, the equation for the evolution of the population
density (10) gives the equilibrium equation satisfying ∂t n∗ = 0 as,

0 =
(
R − R

K

√
V

v∗ + V
n∗ − S

2
v∗

)
n∗,

which, noting that n∗ > 0, immediately gives (15).
Next, to obtain the equilibrium equation for trait variance, satisfying ∂tv

∗ = 0, we
use the variance equation (12) with∇xn∗ = 0, q∗ = Q,∇xv

∗ = 0, and div(∇xq∗) = 0
to write

0 = 2 〈∇xQ , DQ〉R − 2

〈
∇xQ , A

v∗

V
∇̃xQ

〉

R

+R

K

√
V

v∗ + V

n∗v∗2

2
(
v∗ + V

) − Sv∗2 + U. (35)

Away from the habitat boundary, in �δ , we have ∇̃xQ = ϒ
( ‖∇xQ‖R

)∇xQ where
ϒ

( ‖∇xQ‖R
) := 

+‖∇xQ‖R . Therefore, noting that in a one-dimensional space D
becomes a scalar, we can rewrite (35) as

0 = 2D ‖∇xQ‖2
R

− 2(A/V)ϒ
( ‖∇xQ‖R

) ‖∇xQ‖2
R

v∗

+R

K

√
V

v∗ + V

n∗v∗2

2
(
v∗ + V

) − Sv∗2 + U. (36)

Substituting (15) for n∗ in (36) yields

0 = 2D ‖∇xQ‖2
R

− 2(A/V)ϒ
( ‖∇xQ‖R

) ‖∇xQ‖2
R

v∗

+
(
R − S

2
v∗

)
v∗2

2
(
v∗ + V

) − Sv∗2 + U,
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which can be written as

0 = U + 2D ‖∇xQ‖2
R

− 2(A/V)ϒ
( ‖∇xQ‖R

) ‖∇xQ‖2
R

v∗

+ (2R − Sv∗)v∗2 − 4Sv∗2(v∗ + V)

4
(
v∗ + V

) .

Combining the fractions and setting the numerator equal to zero gives,

0 = 4
(
U + 2D ‖∇xQ‖2

R

)(
v∗ + V

) − 8(A/V)ϒ
( ‖∇xQ‖R

) ‖∇xQ‖2
R

v∗(v∗ + V
)

− 5Sv∗3 + (2R − 4SV)v∗2.

Now, simplifying this equation and writing it as a cubic polynomial in v∗ gives (16).
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